Article contents
Statistics of fully turbulent impinging jets
Published online by Cambridge University Press: 24 July 2017
Abstract
Direct numerical simulations (DNS) of subsonic and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties with respect to heat transfer. The Reynolds number range is at low or moderate values in terms of practical applications, but very high regarding the technical possibilities of DNS. A Reynolds number of 8000 is technically relevant for the cooling of turbine blades. In this case, the flow is dominated by primary and secondary vortex rings. Statistics of turbulent heat fluxes and Reynolds stresses as well as the Nusselt number are provided and brought into accordance with these vortices. Velocity and temperature fluctuations were found to have a positive influence on cooling of the impinging plate. Beside the description of the flow, a second aim of this article is the provision of data for improvement of turbulence models. Modern large eddy simulations are still not able to precisely predict impingement heat transfer (Dairay et al., Intl J. Heat Fluid Flow, vol. 50 (0), 2014, pp. 177–187). Common relations between heat and mass transfer respectively temperature and velocity fields are applied to the impinging jet. These relations include the Reynolds and Chilton Colburn analogy, the Crocco–Busemann relation and the generalised Reynolds analogy (GRA). It was found that the first two deliver useful values if the distance to the jet axis is larger than one diameter, away from the strong pressure gradient around the stagnation point. The GRA, in contrast, precisely predicts the mean temperature field if no axial velocity gradient is present. The estimation of temperature fluctuations according to the GRA fails. As third main topic of this article, the influence of the Mach number on heat transfer and the flow field, is studied. Against the common practise of neglecting compressibility effects in experimental Nusselt correlations, we observed that higher Mach numbers (up to 1.1) have a positive influence on heat transfer in the deflection zone due to higher flow fluctuations.
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2017 Cambridge University Press
References
- 30
- Cited by