Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T06:14:11.460Z Has data issue: false hasContentIssue false

Statistical dynamics of two-dimensional flow

Published online by Cambridge University Press:  29 March 2006

Robert H. Kraichnan
Affiliation:
Dublin, New Hampshire 03444

Abstract

The equilibrium statistical mechanics of inviscid two-dimensional flow are re-examined both for a continuum truncated at a top wavenumber and for a system of discrete vortices. In both cases, there are negative-temperature equilibria for finite flows. But for spatially infinite flows, there are only positive-temperature equilibria, and both the continuum and discrete system exhibit proper, extensive, thermodynamic limits a t all realizable values of the energy and enstrophy density. The negative-temperature behaviours of the continuum and discrete system are semi-quantitatively the same, except for a supercondensation phenomenon in the discrete case a t the smallest realizable values of negative temperature. The supercondensed states have very large energy and in them all vortex cores of the same sign are clumped within an area small eompared with the mean area per vortex. The approach of the continuum system to absolute equilibrium by enstrophy cascade to high wavenumbers and energy cascade to low wavenumbers is examined. It is argued that the enstrophy cascade is closely analogous to distortion of a passive scalar field by straining of large spatial scale. This implies that high intermittency of spatial derivatives of the vorticity field can develop but that there is no associated change in the previously proposed log-corrected k−1 enstrophy spectrum law. On the other hand, intermittency build-up in the downward energy cascade can result in a change of the exponent in the energy spectrum law to a negative value of smaller magnitude than 5/3. Intermittency effects in the non-equilibrium energy cascade seem a more plausible explanation for vortex clumping observed in recent computer experiments than do the spatially smooth condensation phenomena associated with the negative-temperature absolute equilibria.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. 1969 Phys. Fluids, 12, 11233.
Crandrasekhar, S. & Reid, W. H. 1957 Proc. Nat. Acad. Sci. (U.S.A.) 43, 521.
Charney, J. G. & Stern, M. E. 1962 J. Atmos. Sci. 19, 159.
Cook, I. & Taylor, J. B. 1972 Phys. Rev. Lett. 28, 82.
Deem, G. S. & Zabusky, N. J. 1971 Phys. Rev. Lett. 27, 396.
Edwards, S. F. & Taylor, J. B. 1974 Proc. Roy. Soc. A 336, 257.
Fjørtoft, R. 1953 Tellus 5, 225.
Fox, D. G. & Orszag, S. A. 1973 Phys. Fluids, 16, 169.
Hauge, E. H. & Hemmer, P. C. 1971 Physica Norvegica, 5, 209.
Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 J. Atmos. Sci. to appear.
Joyce, G. & Montgomery, D. 1973 J. Plasma Phys. 10, 107.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kraichnan, R. H. 1959 Phys. Rev. 113, 1181.
Kraichnan, R. H. 1966 Phys. Fluids, 9, 1728.
Kraichnan, R.H. 1967 Phys. Fluids, 10, 1417.
Kraichnan, R. H. 1971 J. Fluid Mech. 47, 525.
Kraichnan, R. H. 1973 J. Fluid Mech. 59, 745.
Kraichnan, R.H. 1974a J. Fluid Mech. 62, 305.
Kraichnan, R. H. 1974b J. Fluid Mech. 64, 737.
Lee, T. D. 1952 Quart. Appl. Math. 10, 69.
Leith, C. E. 1968 Phys. Fluids, 11, 671.
Leith, C. E. & Kraichnan, R. H. 1972 J. Atmos. Sci. 29, 1041.
Lilly, D. K. 1971 J. Fluid Mech. 45, 395.
Lilly, D. K. 1972a Geophys. Fluid Dym. 3, 289.
Lilly, D. K. 1972b Geophys. Fluid Dyn. 4, 1.
Obouphov, A. M. 1962 J. Fluid Mech. 13, 77.
Unsager, L. 1949 Nuovo Ciniento Suppl. 6, 279.
Saffman, P. G. 1971 Studies in Appl. Math. 50, 377.
Taylor, J. B. 1972 Phys. Lett. A 40, 1.