Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:38:03.708Z Has data issue: false hasContentIssue false

The stability of three-dimensional time-periodic flows with ellipsoidal stream surfaces

Published online by Cambridge University Press:  26 April 2006

G. K. Forster
Affiliation:
School of Mathematical and Computational Sciences, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland, UK
A. D. D. Craik
Affiliation:
School of Mathematical and Computational Sciences, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland, UK

Abstract

Most steady flows with constant vorticity and elliptical streamlines are known to be unstable. These, and certain axisymmetric time-periodic flows, can be analysed by Floquet theory. However, Floquet theory is inapplicable to other time-periodic flows that yield disturbance equations containing a quasi-periodic, rather than periodic, function. A practical method for surmounting this difficulty was recently given by Bayly, Holm & Lifschitz. Employing their method, we determine the stability of a clas of three-dimensional time-periodic flows: namely, those unbounded flows with fixed ellipsoidal stream surfaces and spatially uniform but time-periodic strain rates. Corresponding, but bounded, flows are those within a fixed ellipsoid with three different principal axes. This is perhaps the first exact stability analysis of non-reducibly three-dimensional and time-dependent flows. Though the model has some artificial features, the results are likely to shed light on more complex systems of practical interest.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayly, B. J. 1986 Phys. Rev. Lett. 57, 21602171.
Bayly, B. J., Holm, D. D. & Lifschitz, A. 1996 Phil. Trans. R. Soc. Lond. A 354, 895926.
Craik, A. D. D. 1989 J. Fluid Mech. 198, 275292.
Craik, A. D. D. 1995 In Laminar-Turbulent Transition: Proc. IUTAM Symp., Sendai, Japan (ed. R. Kobayashi), pp. 5358. Springer.
Craik, A. D. D. & Allen, H. R. 1992 J. Fluid Mech. 234, 613627.
Craik, A. D. D. & Criminale, W. O. 1986 Proc. R. Soc. Lond. A 406, 1326.
Gledzer, E. B. & Ponomarev, V. M. 1992 J. Fluid Mech. 240, 130.
Johnson, R. & Moser, J. 1982 Commun. Math. Phys. 84, 403483.
Kelvin, Lord 1887 Phil. Mag. 24 (5), 188196.
Kerswell, R. R. 1993 Geophys. Astrophys. Fluid Dyn. 72, 107144.
Kida, S. 1981 J. Phys. Soc. Japan 50, 35173520.
Lagnado, R. R., Phan-Thien, N. & Leal, L. G. 1984 Phys. Fluids 27, 10941101.
Lebovitz, N. R. & Lifschitz, A. 1996 Phil. Trans. R. Soc. Lond. A 354, 927950.
Malkus, W. V. R. 1968 Science 160, 259264.
Malkus, W. V. R. 1989 Geophys. Astrophys. Flud Dyn. 48, 123143.
Manasseh, R. 1992 J. Fluid Mech. 243, 261296.
Mansour, N. N. & Lundgren, T. S. 1990 Phys. Fluids A 2, 20892091.
Miyazaki, T. & Fukumoto, Y. 1992 Phys. Fluids A 4, 25152522.
Pierrehumbert, R. T. 1986 Phys. Rev. Lett. 57, 21572159.
Simon, B. 1982 Adv. Appl. Mech. 3, 463490.
Vladimirov, V. A., Ribak, L. Ya. & Tarasov, V. 1993 Prikl. Mech. Tekh. Fiz. 3, 6169.
Waleffe, F. 1990 Phys. Fluids A 2, 7680.