Published online by Cambridge University Press: 29 March 2006
The stability of a helical vortex filament of finite core and infinite extent to small sinusoidal displacements of its centre-line is considered. The influence of the entire perturbed filament on the self-induced motion of each element is taken into account. The effect of the details of the vorticity distribution within the finite vortex core on the self-induced motion due to the bending of its axis is calculated using the results obtained previously by Widnall, Bliss & Zalay (1970). In this previous work, an application of the method of matched asymptotic expansions resulted in a general solution for the self-induced motion resulting from the bending of a slender vortex filament with an arbitrary distribution of vorticity and axial velocity within the core.
The results of the stability calculations presented in this paper show that the helical vortex filament has three modes of instability: a very short-wave instability which probably exists on all curved filaments, a long-wave mode which is also found to be unstable by the local-induction model and a mutual-inductance mode which appears as the pitch of the helix decreases and the neighbouring turns of the filament begin to interact strongly. Increasing the vortex core size is found to reduce the amplification rate of the long-wave instability, to increase the amplification rate of the mutual-inductance instability and to decrease the wavenumber of the short-wave instability.