Published online by Cambridge University Press: 21 April 2006
We determine the circumstances under which baroclinic instability in the Charney model subjected to localized time-periodic forcing manifests itself as a wavetrain that oscillates at the source frequency and amplifies in space with distance from the source; analytical and numerical results describing the salient characteristics of such waves are presented. The spatially amplifying disturbance is a hitherto unsuspected part of the response to a pulsating source, and coexists with the more familiar neutral Rossby wavetrains; it is likely to play a role in a wide range of atmospheric and oceanic phenomena.
The central results rely on a careful application of a causality criterion due to Briggs. These results illustrate a practical means of attacking spatial instability problems, which can be applied to a broad class of systems besides the one at hand. We have found that the Charney problem with positive vertical shear is not absolutely unstable, so long as the wind at the ground is non-negative. This implies that spatial instability and forced stationary-wave problems are well posed in an open domain under typical atmospheric circumstances.
The amplifying waves appear on the downstream side of the source, have eastward (downstream) phase propagation and have wavelengths that increase monotonically with decreasing frequency, becoming infinite at zero frequency. When the surface wind is not too large, the spatial amplification rate has a single maximum near the frequency ωm = (f/N)Uz, where f is the Coriolis parameter, N is the stability frequency and Uz is the vertical shear; the rate approaches zero at zero frequency and asymptotes algebraically to zero at large frequency for any positive surface wind. Distinct Charney and Green modes do not appear until the surface wind is made very large. The amplification rate at ωm becomes infinite as surface wind approaches zero, suggesting a mechanism for the concentration of eddy activity.
We also discuss the relationship of these results to the structure of low- and high-frequency atmospheric variability.