Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:19:20.888Z Has data issue: false hasContentIssue false

Soft streaming – flow rectification via elastic boundaries

Published online by Cambridge University Press:  14 July 2022

Yashraj Bhosale
Affiliation:
Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Tejaswin Parthasarathy
Affiliation:
Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Mattia Gazzola*
Affiliation:
Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

Viscous streaming is an efficient mechanism to exploit inertia at the microscale for flow control. While streaming from rigid features has been thoroughly investigated, when body compliance is involved, as in biological settings, little is known. Here, we investigate body elasticity effects on streaming in the minimal case of an immersed soft cylinder. Our study reveals an additional streaming process, available even in Stokes flows. Paving the way for advanced forms of flow manipulation, we illustrate how gained insights may translate to complex geometries beyond circular cylinders.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Mao, X., Juluri, B.K. & Huang, T.J. 2009 A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7 (5), 727731.CrossRefGoogle Scholar
Aydin, O., Zhang, X., Nuethong, S., Pagan-Diaz, G.J., Bashir, R., Gazzola, M. & Saif, M.T.A. 2019 Neuromuscular actuation of biohybrid motile bots. Proc. Natl Acad. Sci. 116 (40), 1984119847.CrossRefGoogle ScholarPubMed
Bandodkar, A.J., et al. 2019 Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5 (1), eaav3294.CrossRefGoogle ScholarPubMed
Bertelsen, A., Svardal, A. & Tjøtta, S. 1973 Nonlinear streaming effects associated with oscillating cylinders. J. Fluid Mech. 59 (3), 493511.CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2020 Shape curvature effects in viscous streaming. J. Fluid Mech. 898, A13.CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2021 a A remeshed vortex method for mixed rigid/soft body fluid–structure interaction. J. Comput. Phys. 444, 110577.CrossRefGoogle Scholar
Bhosale, Y., Vishwanathan, G., Parthasarathy, T., Juarez, G. & Gazzola, M. 2021 b Multi-curvature viscous streaming: flow topology and particle manipulation. arXiv:2111.07184.Google Scholar
Bower, A.F. 2009 Applied Mechanics of Solids. CRC Press.CrossRefGoogle Scholar
Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. 2017 Mobile microrobots for bioengineering applications. Lab on a Chip 17 (10), 17051724.CrossRefGoogle ScholarPubMed
Chan, F.K., Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2022 Three-dimensional geometry and topology effects in viscous streaming. J. Fluid Mech. 933, A53.CrossRefGoogle Scholar
Chen, Y. & Lee, S. 2014 Manipulation of biological objects using acoustic bubbles: a review. Integr. Compar. Biol. 54 (6), 959968.CrossRefGoogle ScholarPubMed
Chong, K., Kelly, S.D., Smith, S. & Eldredge, J.D. 2013 Inertial particle trapping in viscous streaming. Phys. Fluids 25 (3), 033602.CrossRefGoogle Scholar
Gazzola, M., Chatelain, P., Van Rees, W.M. & Koumoutsakos, P. 2011 Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230 (19), 70937114.CrossRefGoogle Scholar
Gazzola, M., Van Rees, W.M. & Koumoutsakos, P. 2012 C-start: optimal start of larval fish. J. Fluid Mech. 698, 518.CrossRefGoogle Scholar
Gilpin, W., Bull, M.S. & Prakash, M. 2020 The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2 (2), 7488.CrossRefGoogle Scholar
Heikenfeld, J., Jajack, A., Rogers, J., Gutruf, P., Tian, L., Pan, T., Li, R., Khine, M., Kim, J. & Wang, J. 2018 Wearable sensors: modalities, challenges, and prospects. Lab on a Chip 18 (2), 217248.CrossRefGoogle ScholarPubMed
Holtsmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am. 26 (1), 2639.CrossRefGoogle Scholar
Huang, H.-W., Uslu, F.E., Katsamba, P., Lauga, E., Sakar, M.S. & Nelson, B.J. 2019 Adaptive locomotion of artificial microswimmers. Sci. Adv. 5 (1), eaau1532.CrossRefGoogle ScholarPubMed
Jacob, C., Tingay, D.G. & Leontini, J.S. 2021 The impact of steady streaming and conditional turbulence on gas transport during high-frequency ventilation. Theor. Comput. Fluid Dyn. 35 (2), 265291.CrossRefGoogle ScholarPubMed
Jalal, S., Van de Moortele, T., Nemes, A., Amili, O. & Coletti, F. 2018 Three-dimensional steady and oscillatory flow in a double bifurcation airway model. Phys. Rev. Fluids 3 (10), 103101.CrossRefGoogle Scholar
Kamrin, K. & Nave, J.-C. 2009 An eulerian approach to the simulation of deformable solids: application to finite-strain elasticity. arXiv:0901.3799.Google Scholar
Kamrin, K., Rycroft, C.H. & Nave, J.-C. 2012 Reference map technique for finite-strain elasticity and fluid–solid interaction. J. Mech. Phys. Solids 60 (11), 19521969.CrossRefGoogle Scholar
Klotsa, D., Baldwin, K.A., Hill, R.J.A., Bowley, R.M. & Swift, M.R. 2015 Propulsion of a two-sphere swimmer. Phys. Rev. Lett. 115 (24), 248102.CrossRefGoogle ScholarPubMed
Lane, C.A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27 (6), 10821086.CrossRefGoogle Scholar
Liu, R.H., Yang, J., Pindera, M.Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454 (1970), 725742.CrossRefGoogle Scholar
Lutz, B.R., Chen, J. & Schwartz, D.T. 2003 Microfluidics without microfabrication. Proc. Natl Acad. Sci. 100 (8), 43954398.CrossRefGoogle ScholarPubMed
Lutz, B.R., Chen, J. & Schwartz, D.T. 2005 Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and stokes layer scaling. Phys. Fluids 17 (2), 023601.CrossRefGoogle Scholar
Lutz, B.R., Chen, J. & Schwartz, D.T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78 (15), 54295435.CrossRefGoogle ScholarPubMed
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.CrossRefGoogle ScholarPubMed
Marmottant, P. & Hilgenfeldt, S. 2004 A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. 101 (26), 95239527.CrossRefGoogle ScholarPubMed
Park, S.-J., et al. 2016 Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353 (6295), 158162.CrossRefGoogle ScholarPubMed
Parthasarathy, T., Bhosale, Y. & Gazzola, M. 2020 A simple, rigorous benchmark for fully coupled flow–structure interaction algorithms. arXiv:2011.09453.Google Scholar
Parthasarathy, T., Chan, F.K. & Gazzola, M. 2019 Streaming-enhanced flow-mediated transport. J. Fluid Mech. 878, 647662.CrossRefGoogle Scholar
Pommella, A., Harun, I., Hellgardt, K. & Garbin, V. 2021 Enhancing microalgal cell wall permeability by microbubble streaming flow. arXiv:2112.08519.Google Scholar
Raney, W.P., Corelli, J.C. & Westervelt, P.J. 1954 Acoustical streaming in the vicinity of a cylinder. J. Acoust. Soc. Am. 26 (6), 10061014.CrossRefGoogle Scholar
Someya, T., Bao, Z. & Malliaras, G.G. 2016 The rise of plastic bioelectronics. Nature 540 (7633), 379385.CrossRefGoogle ScholarPubMed
Spelman, T.A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Engng Maths 105 (1), 3165.CrossRefGoogle Scholar
Thameem, R., Rallabandi, B. & Hilgenfeldt, S. 2016 Particle migration and sorting in microbubble streaming flows. Biomicrofluidics 10 (1), 014124.CrossRefGoogle ScholarPubMed
Thameem, R., Rallabandi, B. & Hilgenfeldt, S. 2017 Fast inertial particle manipulation in oscillating flows. Phys. Rev. Fluids 2 (5), 052001.CrossRefGoogle Scholar
Towns, J., et al. 2014 XSEDE: accelerating scientific discovery. Comput. Sci. Engng 16 (5), 6274.CrossRefGoogle Scholar
Wang, C., Jalikop, S.V. & Hilgenfeldt, S. 2011 Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99 (3), 034101.CrossRefGoogle Scholar
Supplementary material: PDF

Bhosale et al. supplementary material

Supplementary data

Download Bhosale et al. supplementary material(PDF)
PDF 2.5 MB