Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T12:30:16.409Z Has data issue: false hasContentIssue false

Small-deformation theory for a surfactant-covered drop in linear flows

Published online by Cambridge University Press:  10 April 2009

PETIA M. VLAHOVSKA*
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
JERZY BŁAWZDZIEWICZ
Affiliation:
Department of Mechanical Engineering, Yale University, New Haven, CT 06520-8284, USA
MICHAEL LOEWENBERG
Affiliation:
Department of Chemical Engineering, Yale University, New Haven, CT 06520-8286, USA
*
Email address for correspondence: [email protected]

Abstract

A small-deformation perturbation analysis is developed to study the effect of surfactant on drop dynamics in viscous flows. The surfactant is assumed to be insoluble in the bulk-phase fluids; the viscosity ratio and surfactant elasticity parameters are arbitrary. Under small-deformation conditions, the drop dynamics are described by a system of ordinary differential equations; the governing equations are given explicitly for the case of axisymmetric and two-dimensional imposed flows. Analytical results accurate to third order in the flow-strength parameter (capillary number) are derived (i) for the stationary drop shape and surfactant distribution in simple shear and axisymmetric straining flows, and (ii) for the rheology of a dilute emulsion in shear flow which include a shear-thinning viscosity and non-zero normal stresses. For drops with clean interfaces, the small-deformation theory presented here improves the results of Barthès-Biesel & Acrivos (J. Fluid Mech., vol. 61, 1973, p. 1). Boundary integral simulations are used to test our theory and explore large-deformation conditions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthès-Biesel, D. & Acrivos, A. 1973 a Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech. 61, 121.CrossRefGoogle Scholar
Barthès-Biesel, D. & Acrivos, A. 1973 b Rheology of suspensions and its relation to phenomenological theories for non-Newtonian fluid. Int. J. Multiphase Flow 1, 124.CrossRefGoogle Scholar
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2004 Boundary integral method for deformable interfaces in the presence of insoluble surfactants. Lect. Notes Comput. Sci. 2907, 355362.CrossRefGoogle Scholar
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Coll. Intl Sci. 298, 369394.CrossRefGoogle ScholarPubMed
Bławzdziewicz, J., Vlahovska, P. & Loewenberg, M. 2000 Rheology of a dilute emulsion of surfactant-covered spherical drops. Physica A 276, 5080.CrossRefGoogle Scholar
Booty, M. R. & Siegel, M. 2005 Steady deformation and tip-streaming of a slender bubble with surfactant in an extensional flow. J. Fluid Mech. 544, 243275.CrossRefGoogle Scholar
Chaffey, C. & Brenner, H. 1967 A second-order theory for shear deformation of drops. J. Coll. Intl Sci. 24, 258269.CrossRefGoogle Scholar
Cichocki, B., Felderhof, B. U. & Schmitz, R. 1988 Hydrodynamic interactions between two spherical particles. PhysicoChem. Hyd. 10, 383403.Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37, 601.CrossRefGoogle Scholar
Edmonds, A. R. 1960 Angular Momentum in Quantum Mechanics. Princeton University Press.Google Scholar
Eggleton, C., Tsai, T. & Stebe, K. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.CrossRefGoogle ScholarPubMed
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1998 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.CrossRefGoogle Scholar
Feigl, K., Megias-Alguacil, D., Fischer, P. & Windhab, E. 2007 Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Engng Sci. 62, 32423258.CrossRefGoogle Scholar
Fischer, P. & Erni, P. 2007 Emulsion drops in external flow fields – the role of liquid interfaces. Curr. Opin. Coll. Interface Sci. 12, 196205.CrossRefGoogle Scholar
Flumerfelt, R. W. 1980 Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 76, 330349.CrossRefGoogle Scholar
Frankel, N. & Acrivos, A. 1970 The constitutive equation for a dilute emulsion. J. Fluid Mech. 44, 6578.CrossRefGoogle Scholar
Greco, F. 2002 Second-order theory for the deformation of a Newtonian drop in a stationary flow field. Phys. Fluids 14, 946954.CrossRefGoogle Scholar
Ha, J., Yoon, Y. & Leal, L. G. 2003 The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids 15, 849867.CrossRefGoogle Scholar
Hu, Y. & Lips, A. 2003 Estimating surfactant surface coverage and decomposing its effect on drop deformation. Phys. Rev. Lett. 91, 044501.CrossRefGoogle ScholarPubMed
Hu, Y. T. 2008 Determination of interfacial tension between two immiscible polymers with and without surfactants at the interface. J. Coll. Intl Sci. 319, 287294.CrossRefGoogle ScholarPubMed
Hu, Y. T., Pine, D. J. & Leal, L. G. 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12, 484489.CrossRefGoogle Scholar
Hudson, S. D., Jamieson, A. M. & Burkhart, B. E. 2003 The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Coll. Intl Sci. 265, 409421.CrossRefGoogle ScholarPubMed
James, A. J. & Lowengrub, J. 2004 A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685722.CrossRefGoogle Scholar
Jeon, H. K. & Macosko, C. W. 2003 Visualization of block copolymer distribution on a sheared drop. Polymer 44, 53815386.CrossRefGoogle Scholar
Jones, M. N. 1985 Spherical Harmonics and Tensors for Classical Field Theory. Wiley.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101.CrossRefGoogle Scholar
Lee, J. & Pozrikidis, C. 2006 Effect of surfactants on the deformation of drops and bubbles in navier-stokes flow. Comput. Fluids 35, 4360.CrossRefGoogle Scholar
Lequeux, F. 1998 Emulsion rheology. Curr. Opin. Colloid Interface Sci. 3, 408411.CrossRefGoogle Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.CrossRefGoogle Scholar
Milliken, W. J., Stone, H. A. & Leal, L. G. 1993 The effect of surfactant on transient motion of Newtonian drops. Phys. Fluids A 5, 6979.CrossRefGoogle Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.CrossRefGoogle ScholarPubMed
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 22382262.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8, 17381751.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 2001 Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. J. Engng Math. 41, 237258.CrossRefGoogle Scholar
Pozrikidis, C. 2004 A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Engng Math. 49, 163180.CrossRefGoogle Scholar
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.CrossRefGoogle Scholar
Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech. 16, 4566.CrossRefGoogle Scholar
Rother, M. A. & Davis, R. H. 2004 Buoyancy driven coalescence of spherical drops covered with incompressible surfactant at arbitrary peclet number. J. Coll. Intl Sci. 270, 205220.CrossRefGoogle ScholarPubMed
Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 2006 Surfactant effects on buoyancy-driven viscous interactions of deformable drops. Coll. Surf. A 282, 5060.CrossRefGoogle Scholar
Schowalter, W., Chaffey, C. & Brenner, H. 1968 Rheological behavior of a dilute emulsion. J. Coll. Intl Sci. 26, 152160.CrossRefGoogle ScholarPubMed
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.CrossRefGoogle Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Ann. Rev. Fluid Mech. 26, 6599.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.Google Scholar
Tucker, C. & Moldenaers, P. 2002 Microstructural evolution in polymer blends. Ann. Rev. Fluid Mech. 34, 177210.CrossRefGoogle Scholar
Van Hemelrijck, E., Van Puyvelde, P., Velankar, S., Macosko, C. W. & Moldenaers, P. 2004 Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J. Rheol. 48, 143158.CrossRefGoogle Scholar
Van Puyvelde, P., Velankar, S. & Moldenaers, P. 2001 Rheology and morphology of compatibilized polymer blend. Curr. Opin. Coll. Intl Sci. 6, 457463.CrossRefGoogle Scholar
Varshalovich, D. A., Moskalev, A. N. & Kheronskii, V. K. 1988 Quantum Theory of Angular Momentum. World Scientfic.CrossRefGoogle Scholar
Velankar, S., Van Pyuvede, P., Mewis, J. & Moldenaers, P. 2001 Effect of compatibilization on the breakup of polymeric drops in shear flow. J. Rheol. 45, 10071019.CrossRefGoogle Scholar
Velankar, S., Van Puyvelde, P., Mewis, J. & Moldenaers, P. 2004 a Steady shear rheological properties of model compatibilized blends. J. Rheol. 48, 725744.CrossRefGoogle Scholar
Velankar, S., Zhou, H., Jeon, H. K. & Macosko, C. 2004 b Cfd evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops. J. Coll. Intl Sci. 272, 172185.CrossRefGoogle ScholarPubMed
Vlahovska, P. 2003 Dynamics of a surfactant-covered drop and the non-Newtonian rheology of emulsions. PhD thesis, Yale University (pdf file available by email: ).Google Scholar
Vlahovska, P., Bławzdziewicz, J. & Loewenberg, M. 2005 Deformation of a surfatant-covered drop in a linear flow. Phys. Fluids 17, Art. No. 103103.CrossRefGoogle Scholar
Vlahovska, P. M. & Gracia, R. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75, 016313.CrossRefGoogle ScholarPubMed
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8, 32033204.CrossRefGoogle Scholar
Xu, J. J., Li, Z. L., Lowengrub, J. & Zhao, H. K. 2006 A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590616.CrossRefGoogle Scholar
Yon, S. & Pozrikidis, C. 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27, 879902.CrossRefGoogle Scholar