Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T08:52:55.816Z Has data issue: false hasContentIssue false

The slow motion of slender rod-like particles in a second-order fluid

Published online by Cambridge University Press:  29 March 2006

L. G. Leal
Affiliation:
Chemical Engineering, California Institute of Technology, Pasadena

Abstract

The motion of a slender axisymmetric rod-like particle is investigated theoretically for translation through a quiescent second-order fluid and for rotation in a simple shear flow of the same material. The analysis consists of an asymptotic expansion about the limit of rheologically slow flow, coupled with an application of a generalized form of the reciprocal theorem of Lorentz to calculate the force and torque on the particle. It is shown that an arbitrarily oriented particle with fore-aft symmetry translates, to a first approximation, at the same rate as in an equivalent Newtonian fluid, but that the motion of particles with no fore-aft symmetry may be modified at the same level of approximation. In addition, it is found that freely translating particles with fore-aft symmetry exhibit a single stable orientation with the axis of revolution vertical. In simple shear flow at small and moderate shear rates, the non-Newtonian nature of the suspending fluid causes a drift through Jeffery orbits to the equilibrium orbit C = 0 in which the particle rotates about its axis of revolution. At larger shear rates, the particle aligns itself in the direction of flow and ceases to rotate. Comparison with the available experimental data indicates that the measured rate of orbit drift may be used to determine the second normal stress difference parameter of the second-order fluid model. Finally, in an appendix, some preliminary observations are reported of the motion of slender rod-like particles falling through a quiescent viscoelastic fluid.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartram, E. & Mason, S. G. 1974 To be published.
Batchelor, G. K. 1970 J. Fluid Mech. 44, 419.
Brindley, G. & Broadbent, J. M. 1973 Rheol. Acta, 12, 48.
Bruce, C. & Schwarz, W. H. 1969 J. Polymer Sci. 7, 909.
Caswell, B. & Schwarz, W. H. 1962 J. Fluid Mech. 13, 417.
Cox, R. G. 1970a J. Fluid Mech. 44, 791.
Cox, R. G. 1970b J. Fluid Mech. 45, 625.
Cox, R. G. & Brenner, H. 1968 Chem. Engng Sci. 23, 147.
Frankel, N. A. & Acrivos, A. 1970 J. Fluid Mech. 44, 65.
Gauthier, F., Goldsmith, H. L. & Mason, S. G. 1971 Rheol. Acta, 10, 344.
Giesekus, H. 1963 Rheol. Acta, 3, 59.
Hinch, E. J. & Leal, L. G. 1972 J. Fluid Mech. 52, 683.
Ho, B. P. & Leal, L. G. 1974 J. Fluid Mech. 65, 365.
Jeffery, G. B. 1922 Proc. Roy. Soc. A, 102, 161.
Karnis, A. & Mason, S. G. 1967 Trans. Soc. Rheol. 10, 571.
Leal, L. G. & Hinch, E. J. 1971 J. Fluid Mech. 46, 685.
Leal, L. G. & Hinch, E. J. 1972 J. Fluid Mech. 55, 745.
Leslie, F. M. 1961 Quart. J. Mech. Appl. Math. 14, 36.
Lin, C., Peery, J. H. & Schowalter, W. R. 1970 J. Fluid Mech. 44, 1.
Mestre, N. J. DE 1973 J. Fluid Mech. 58, 641.
Olabisi, O. & Williams, M. C. 1972 Trans. Soc. Rheol. 16, 727.
Saffman, P. G. 1956 J. Fluid Mech. 1, 540.
Skoog, J., Leal, L. G. & Acrivos, A. 1971 J. Chem. Engng, 49, 569.
Tanner, R. I. 1970 Trans. Soc. Rheol. 14, 483.
Tillett, J. P. K. 1970 J. Fluid Mech. 44, 401.
Wales, J. L. S. & Philippoff, W. 1973 Rheol. Acta, 12, 25.
Weissenberg, K. 1947 Nature, 159, 310.
Supplementary material: PDF

Leal supplementary material

Supplementary Material

Download Leal supplementary material(PDF)
PDF 1.7 MB