Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:50:29.404Z Has data issue: false hasContentIssue false

Slender axisymmetric Stokesian swimmers

Published online by Cambridge University Press:  01 April 2014

S. Toppaladoddi*
Affiliation:
Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA
N. J. Balmforth
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada
*
Email address for correspondence: [email protected]

Abstract

Slender-body theory is used to study axisymmetric swimmers propelled by motions of their surfaces. To leading order, the locomotion speed is given by an integral involving the fluid velocity at the surface of the slender body. Locomotion speeds are calculated for fixed-shape swimmers with prescribed fluid surface velocities and for impermeable swimmers driven by propagating surface waves. Next, the internal mechanics is considered, modelling the swimmer as a viscous fluid bounded by an elastic shell. Prescribed forces are exerted on the shell to drive both the internal and external fluid flow and the surface waves. The internal fluid mechanics is determined using lubrication theory. Locomotion speeds are calculated for transverse and longitudinal waves of surface deformation, and the efficiency of the motions is determined. Transverse surface waves are both weaker and less efficient at driving locomotion than longitudinal waves. The results indicate how estimates of swimming speed based on nearly spherical swimmers with low-amplitude surface waves can be adapted for slender swimmers with nonlinear surface deformations.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdari, A. & Stone, H. A. 1999 A note on swimming using internally generated travelling waves. Phys. Fluids 11, 12751277.Google Scholar
Alim, K., Amselem, G., Peaudecerf, F., Brenner, M. P. & Pringle, A. 2013 Random network peristalsis in Physarum polycephalum organises fluid flows across an individual. Proc. Natl Acad. Sci. USA 110 (33), 13 30613 311.Google Scholar
Allard, J. & Mogilner, A. 2013 Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25, 107115.Google Scholar
Arroyo, M., Heltai, L., Millán, D. & DeSimone, A. 2012 Reverse engineering the euglenoid movement. Proc. Natl Acad. Sci. USA 109 (44), 1787417879.Google Scholar
Avron, J. E., Kenneth, O. & Oaknin, D. H. 2005 Pushmepullyou: An efficient micro-swimmer. New J. Phys. 7 (1), 234.CrossRefGoogle Scholar
Barry, N. P. & Bretscher, M. S. 2010 Dictyostelium amoebae and neutrophils can swim. Proc. Natl Acad. Sci. USA 107 (25), 11 37611 380.Google Scholar
Blake, J. R. 1971a A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (2), 199208.CrossRefGoogle Scholar
Blake, J. R. 1971b Infinite models for ciliary propulsion. J. Fluid Mech. 49 (2), 209222.Google Scholar
Blake, J. R. 1971c Self-propulsion due to oscillations on the surface of a cylinder at low Reynolds numbers. Bull. Austral. Math. Soc. 5, 255264.CrossRefGoogle Scholar
Blake, J. R., Tuck, E. O. & Wakeley, P. W. 2010 A note on the $S$ -transform and slender-body theory in Stokes flow. IMA J. Appl. Maths 75, 343355.Google Scholar
Brahamsha, B. 1999 Non-flagellar swimming in marine Synechococcus . J. Mol. Microbiol. Biotechnol. 1 (1), 5962.Google Scholar
Charras, G. & Palluch, E. 2008 Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730736.CrossRefGoogle ScholarPubMed
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. 2005 Non-equilibration of hydrostatic pressure in blebbing cells. Nat. Lett. 435, 365369.Google Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44 (4), 791810.Google Scholar
Driscoll, M. K., McCann, C., Kopace, R., Homan, T., Fourkas, J. T., Parent, C. & Losert, W. 2012 Cell shape dynamics: from waves to migration. PLoS Comput. Biol. 8 (3), e1002392.CrossRefGoogle ScholarPubMed
Ehlers, K. & Oster, G. 2012 On the mysterious propulsion of Synechococcus . PLoS One 7 (5), e36081.CrossRefGoogle ScholarPubMed
Ehlers, K. M., Samuel, A. D. T., Berg, H. C. & Montogomery, R. 1996 Do cyanobacteria swim using traveling surface waves?. Proc. Natl Acad. Sci. USA 93, 83408343.Google Scholar
Farutin, A., Rafai, S., Dysthe, D. K., Duperray, A., Peyla, P. & Misbah, C. 2013 Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations. Phys. Rev. Lett. 111, 228102.Google Scholar
Felderhof, B. U. 2006 The swimming of animalcules. Phys. Fluids 18, 063101.Google Scholar
Fletcher, D. A. & Theriot, J. A. 2004 An introduction to cell motility for the physical scientist. Phys. Biol. 1 (1), T1.CrossRefGoogle ScholarPubMed
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.Google Scholar
Howe, J. D., Barry, N. P. & Bretscher, M. S. 2013 How do amoebae swim and crawl?. PLoS One 8 (9), e74382.Google Scholar
Iima, M. & Nakagaki, T. 2012 Peristaltic transport and mixing of cytosol through the whole body of Physarum plasmodium . Math. Med. Biol. 29 (3), 263281.Google Scholar
Jaffrin, M. Y. & Shapiro, A. H. 1971 Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 1337.CrossRefGoogle Scholar
Jarrell, K. F. & McBride, M. J. 2008 The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466476.CrossRefGoogle ScholarPubMed
Johnson, R. E. 1980 An improved slender-body theory for Stokes flow. J. Fluid Mech. 99 (2), 411431.Google Scholar
Kanevsky, A., Shelley, M. J. & Tornberg, A.-K. 2010 Modelling simple locomotors in Stokes flow. J. Comput. Phys. 229, 958977.Google Scholar
Keller, J. B. & Rubinow, S. I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75, 705714.Google Scholar
Keller, S. R. & Wu, T. Y. 1977 A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid Mech. 80 (2), 259278.CrossRefGoogle Scholar
Lauga, E. & Powers, T. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 136.Google Scholar
Leshansky, A. M., Kenneth, O., Gat, O. & Avron, J. E. 2007 A frictionless microswimmer. New J. Phys. 9, 145162.Google Scholar
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 109, 109118.CrossRefGoogle Scholar
Magar, V., Goto, T. & Pedley, T. J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56, 6591.Google Scholar
Matsumoto, K., Takagi, S. & Nakagaki, T. 2008 Locomotive mechanism of Physarum plasmodia based on spatiotemporal analysis of protoplasmic streaming. Biophys. J. 94, 24922504.Google Scholar
Michelin, S. & Lauga, E. 2013 Unsteady feeding and optimal strokes of model ciliates. J. Fluid Mech. 715, 131.Google Scholar
Najafi, A. & Golestanian, R. 2004 Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69 (6), 062901.Google Scholar
Nakahara, K., Yamamoto, M., Okayama, Y., Yoshimura, K., Fukagata, K. & Miki, N. 2013 A peristaltic micropump using travelling waves on a polymer membrane. J. Micromech. Microengng 23 (8), 085024.Google Scholar
Nan, B. & Zusman, D. R. 2011 Uncovering the mystery of gliding motility in the Myxobacteria. Annu. Rev. Genet. 45, 2139.Google Scholar
Palagi, S., Jager, E. W., Mazzolai, B. & Beccai, L. 2013 Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications. Bioinspir. Biomim. 8 (4), 046004.CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M. J. 2007 Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102.Google Scholar
Selverov, K. P. & Stone, H. A. 2001 Peristaltically driven channel flows with applications toward micromixing. Phys. Fluids 13, 18371859.Google Scholar
Setter, E. & Bucher, I. 2013 Robotic swimmer/pump based on an optimal wave generating mechanism. Mech. Mach. Theory 70, 266277.Google Scholar
Setter, E. & Bucher, I. 2014 Elastic travelling waves in multi-dimensional structures with application to self-propulsion. In Proc. ISMA2010, September 2010, Leuven, Belgium (ed. Sas, P. & Bergen, B.), KU Leuven.Google Scholar
Setter, E., Bucher, I. & Haber, S. 2012 Low-Reynolds-number swimmer utilising surface travelling waves: analytical and experimental study. Phys. Rev. E 85, 066304.CrossRefGoogle ScholarPubMed
Shapiro, A. H., Jaffrin, M. Y. & Weinberg, S. L. 1969 Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799825.Google Scholar
Short, M. B., Solari, C. A., Ganguly, S., Powers, T. R., Kessler, J. O. & Goldstein, R. E. 2006 Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Natl Acad. Sci. USA 103 (22), 83158319.CrossRefGoogle ScholarPubMed
Spagnolie, S. E. & Lauga, E. 2010 Jet propulsion without inertia. Phys. Fluids 22, 081902.Google Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 41024104.Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.Google Scholar
Takagi, D. & Balmforth, N. J. 2011 Peristaltic pumping of viscous fluid in an elastic tube. J. Fluid Mech. 672, 196218.Google Scholar
Taylor, G. I. 1951 Analysis of the swimming of microorganisms. Proc. R. Soc. Lond. A 209, 447461.Google Scholar
Tillett, J. P. K. 1970 Axial and transverse Stokes flow past slender axisymmetric bodies. J. Fluid Mech. 44 (3), 401417.Google Scholar
Timoshenko, S. & Woinowsky-Kreiger, S. 1959 Theory of Plates and Shells. McGraw-Hill.Google Scholar
Tuck, O. E. 1964 Some methods for flow past blunt slender bodies. J. Fluid Mech. 18, 619635.Google Scholar
Tuck, O. E. 1968 A note on a swimming problem. J. Fluid Mech. 31, 305308.Google Scholar
Van Haastert, P. J. M. 2011 Amoeboid cells use protrusions for walking, gliding and swimming. PLoS One 6, e27532.Google Scholar
Walker, S. W. & Shelley, M. J. 2010 Shape optimization of peristaltic pumping. J. Comput. Phys. 229, 12601291.CrossRefGoogle Scholar
Wilkening, J. & Hosoi, A. E. 2008 Shape optimization of swimming sheets. J. Fluid Mech. 601, 2561.Google Scholar
Yi, M., Bau, H. H. & Hu, H. 2002 Peristaltically induced motion in a closed cavity with two vibrating walls. Phys. Fluids 14, 184197.Google Scholar