Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T18:46:17.342Z Has data issue: false hasContentIssue false

Simple and double microemulsions via the capillary breakup of highly stretched liquid jets

Published online by Cambridge University Press:  09 September 2016

A. Evangelio
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla, Spain
F. Campo-Cortés
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla, Spain
J. M. Gordillo*
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

We present an exhaustive experimental and theoretical study of the shapes of simple and compound jets formed when one (simple) or two (compound) immiscible liquids are injected into another liquid. The viscosity of the co-flowing external liquid is chosen to vary the characteristic Reynolds number of the outer stream, $Re_{o}$, over a wide range of values. Our slender-body theory in Gordillo et al. (J. Fluid Mech., vol. 738, 2014, pp. 335–357) is extended to predict the shapes of simple jets when $Re_{o}$ is such that $Re_{o}\gg 1$ and also to predict the shapes of compound jets in the case of $Re_{o}\lesssim O(1)$. The validity of our theoretical results, applicable to describe the dynamics of simple or compound jets within an outer carrier fluid in a wide variety of practical situations, is tested using a set-up where the liquids flow from a pressurized chamber towards an extraction tube, finding a very good agreement between the predicted and the observed shapes. Moreover, when $Re_{o}\lesssim O(1)$, and thanks to the fact that the liquid jets produced using our method are highly stretched in the downstream direction, we find that the values of the critical capillary number above which a steady stretched jet is produced, with the capillary number defined here using the outer stream velocity and viscosity, is well below the corresponding critical values characterizing other similar procedures, like flow focusing. This experimental result, which is supported by a spatio-temporal stability analysis in which the axial gradients of the unperturbed solution are retained in the dispersion relation, imply a substantial saving of energy and of the volume of outer liquid necessary to generate a steady capillary jet from which drops are regularly produced. Additionally, making use of continuity arguments and of the fact that drops are formed as a consequence of the growth of a capillary instability, we provide closed expressions for the drop diameters and their production frequencies when the capillary number is above the critical one, in very good agreement with experiments. The simple or double microemulsions generated by the capillary disintegration of the type of simple or compound highly stretched steady jets described here might find applications in biotechnology, pharmacy, cosmetics or materials science.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambravaneswaran, B., Subramani, H., Philips, S. & Basaran, O. 2004 Dripping–jetting transitions in a dripping faucet. Phys. Rev. Lett. 93, 034501.CrossRefGoogle Scholar
Anna, S. L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285309.CrossRefGoogle Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364366.Google Scholar
Barrero, A. & Loscertales, I. G. 2007 Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89106.CrossRefGoogle Scholar
Basaran, O., Gao, H. & Bhat, P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.CrossRefGoogle Scholar
Castro-Hernández, E., Campo-Cortés, F. & Gordillo, J. M. 2012 Slender-body theory for the generation of micrometre-sized emulsions through tip streaming. J. Fluid Mech. 698, 423445.Google Scholar
Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2000 Temporal instability of compound threads and jets. J. Fluid Mech. 420, 125.Google Scholar
Chong, D., Liu, X., Ma, H., Huang, G., Han, Y., Cui, X., Yan, J. & Xu, F. 2015 Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19, 10711090.Google Scholar
Cohen, I., Li, H., Hougland, J., Mrksich, M. & Nagel, S. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.Google Scholar
Collins, R. T., Sambath, K., Harris, M. T. & Basaran, O. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 49054910.Google Scholar
Driessen, T., Sleutel, P., Dijksman, F., Jeurissen, R. & Lohse, D. 2014 Control of jet breakup by a superposition of two Rayleigh–Plateau-unstable modes. J. Fluid Mech. 749, 275296.Google Scholar
Eggers, J. & Dupont, T.F 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Evangelio, A., Campo-Cortés, F. & Gordillo, J. M. 2015 Pressure gradient induced generation of microbubbles. J. Fluid Mech. 778, 653668.Google Scholar
Fernández-Nieves, A., Vitelli, V., Utada, A. S., Link, D. R., Márquez, M., Nelson, D. R. & Weitz, D. 2007 Novel defect structures in nematic liquid crystal shells. Phys. Rev. Lett. 99, 157801.Google Scholar
Gañán Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.Google Scholar
Gañán Calvo, A. M. 2008 Unconditional jetting. Phys. Rev. E 78, 026304.Google Scholar
Gañán Calvo, A. M., González, R., Riesco-Chueca, P. & Herrada, M. 2007 Focusing capillary jets close to the continuum limit. Nat. Phys. 3, 737742.Google Scholar
Gañán Calvo, A. M., Herrada, M. & Garstecki, P. 2006 Bubbling in unbounded coflowing liquids. Phys. Rev. Lett. 96, 124504.Google ScholarPubMed
Gañán Calvo, A. M. & Riesco-Chueca, P. 2006 Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing. J. Fluid Mech. 553, 7584.Google Scholar
García, F. J. & Castellanos, A. 1994 One-dimensional models for slender axisymmetric viscous liquid jets. Phys. Fluids 6 (8), 26762689.CrossRefGoogle Scholar
Garstecki, P., Fuerstman, M., Stone, H. & Whitesides, G. 2006 Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up. Lab on a Chip 6, 437446.CrossRefGoogle Scholar
Garti, N. 1997 Double emulsions – scope, limitations and new achievements. Colloids Surf. 123–124, 233246.Google Scholar
Gordillo, J. M., Sevilla, A. & Campo-Cortés, F. 2014 Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738, 335357.CrossRefGoogle Scholar
Guerrero, J., González, H. & García, F. J. 2012 Spatial modes of capillary jets, with application to surface stimulation. J. Fluid Mech. 702, 354377.Google Scholar
Herrada, M. A., Montanero, J. M., Ferrera, C. & Gañán Calvo, A. M. 2010 Analysis of the dripping–jetting transition in compound capillary jets. J. Fluid Mech. 649, 523536.Google Scholar
Hertz, B. & Hermanrud, B. 1983 A liquid compound jet. J. Fluid Mech. 131, 271287.CrossRefGoogle Scholar
Lopez-Leon, T., Koning, V., Devaiah, K. B. S., Vitelli, V. & Fernández-Nieves, A. 2011 Frustrated nematic order in spherical geometries. Nat. Phys. 7, 391394.Google Scholar
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Márquez, M. & Gañán Calvo, A. M. 2002 Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 16951698.Google Scholar
Loscertales, I. G., Barrero, A., Márquez, M., Spretz, R., Velarde-Ortiz, R. & Larsen, G. 2004 Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc. 126, 53765377.Google Scholar
Marín, A. G., Loscertales, I. G., Márquez, M. & Barrero, A. 2007 Simple and double emulsions via coaxial jet electrosprays. Phys. Rev. Lett. 98, 014502.CrossRefGoogle ScholarPubMed
de la Mora, J. F. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217423.CrossRefGoogle Scholar
Nabavi, S., Vladisavljević, G., Gu, S. & Ekanem, E. 2015 Double emulsion production in glass capillary microfluidic device: parametric investigation of droplet generation behaviour. Chem. Engng Sci. 130, 183196.CrossRefGoogle Scholar
Oh, H., Kim, S., Baek, J., Seong, G. & Lee, S. 2006 Hydrodynamic micro-encapsulation of aqueous fluids and cells via ‘on the fly’ photopolymerization. J. Micromech. Microengng 16, 285291.CrossRefGoogle Scholar
Rodríguez-Rodríguez, J., Gordillo, J. M. & Martínez-Bazán, C. 2006 Breakup time and morphology of drops and bubbles in a high Reynolds number flow. J. Fluid Mech. 548, 6986.CrossRefGoogle Scholar
Rubio-Rubio, M., Sevilla, A. & Gordillo, J. M. 2013 On the thinnest steady threads obtained by gravitational stretching of capillary jets. J. Fluid Mech. 729, 471483.CrossRefGoogle Scholar
Sanz, A. & Meseguer, J. 1985 One-dimensional linear analysis of the compound jet. J. Fluid Mech. 159, 5568.Google Scholar
Shah, R., Shum, H., Rowat, A., Lee, D., Agresti, J., Utada, A., Chu, L., Kim, J., Fernández-Nieves, A., Martinez, C. et al. 2008 Designer emulsions using microfluidics. Materialstoday 11 (4), 1827.Google Scholar
Suryo, R. & Basaran, O. A. 2006 Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18, 082102.Google Scholar
Suryo, R., Doshi, P. & Basaran, O. A. 2006 Nonlinear dynamics and breakup of compound jets. Phys. Fluids 18, 082107.Google Scholar
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. 2001 Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86 (18), 41634166.Google Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Utada, A. S., Fernández-Nieves, A., Gordillo, J. M. & Weitz, D. 2008 Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100, 014502.Google Scholar
Utada, A. S., Fernández-Nieves, A., Stone, H. A. & Weitz, D. 2007 Dripping to jetting transitions in co-flowing liquid streams. Phys. Rev. Lett. 99, 094502.CrossRefGoogle Scholar
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. & Weitz, D. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.CrossRefGoogle ScholarPubMed
Vu, T. V., Homma, S., Tryggvason, G., Wells, J. C. & Takakura, H. 2013 Computations of breakup modes in laminar compound liquid jets in a coflowing fluid. Intl J. Multiphase Flow 49, 5869.Google Scholar
Zarzar, D., Sresht, V., Sletten, E., Kalow, J., Blankschtein, D. & Swager, T. 2015 Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520524.Google Scholar