Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:04:00.109Z Has data issue: false hasContentIssue false

Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures

Published online by Cambridge University Press:  26 July 2019

Bauyrzhan K. Primkulov
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Amir A. Pahlavan
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA
Xiaojing Fu
Affiliation:
Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA
Benzhong Zhao
Affiliation:
Department of Civil Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
Christopher W. MacMinn
Affiliation:
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Ruben Juanes*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

We develop a novel ‘moving-capacitor’ dynamic network model to simulate immiscible fluid–fluid displacement in porous media. Traditional network models approximate the pore geometry as a network of fixed resistors, directly analogous to an electrical circuit. Our model additionally captures the motion of individual fluid–fluid interfaces through the pore geometry by completing this analogy, representing interfaces as a set of moving capacitors. By incorporating pore-scale invasion events, the model reproduces, for the first time, both the displacement pattern and the injection-pressure signal under a wide range of capillary numbers and substrate wettabilities. We show that at high capillary numbers the invading patterns advance symmetrically through viscous fingers. In contrast, at low capillary numbers the flow is governed by the wettability-dependent fluid–fluid interactions with the pore structure. The signature of the transition between the two regimes manifests itself in the fluctuations of the injection-pressure signal.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aker, E., Måløy, K. J. & Hansen, A. 1998a Simulating temporal evolution of pressure in two-phase flow in porous media. Phys. Rev. E 58 (2), 22172226.Google Scholar
Aker, E., Måløy, K. J., Hansen, A. & Batrouni, G. G. 1998b A two-dimensional network simulator for two-phase flow in porous media. Trans. Porous Med. 32 (2), 163186.Google Scholar
Al-Gharbi, M. S. & Blunt, M. J. 2005 Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E 71 (1), 016308.Google Scholar
Arnéodo, A., Couder, Y., Grasseau, G., Hakim, V. & Rabaud, M. 1989 Uncovering the analytical Saffman–Taylor finger in unstable viscous fingering and diffusion-limited aggregation. Phys. Rev. Lett. 63 (9), 984987.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58 (4), 977999.Google Scholar
Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O. et al. 2013 Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl Acad. Sci. USA 110 (10), 37553759.Google Scholar
Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K. J. & Aharony, A. 1991 Gravity invasion percolation in two dimensions – experiment and simulation. Phys. Rev. Lett. 67, 584587.Google Scholar
Bischofberger, I., Ramachandran, R. & Nagel, S. R. 2015 An island of stability in a sea of fingers: emergent global features of the viscous-flow instability. Soft Matt. 11 (37), 74287432.Google Scholar
Blunt, M. J. 2001 Flow in porous media pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6 (3), 197207.Google Scholar
Cai, T. T. 2002 On block thresholding in wavelet regression: adaptivity, block size, and threshold level. Statistica Sin. 12, 12411273.Google Scholar
Chandler, R., Koplik, J., Lerman, K. & Willemsen, J. F. 1982 Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249267.Google Scholar
Chen, J. D. 1987 Radial viscous fingering patterns in Hele-Shaw cells. Exp. Fluids 5 (6), 363371.Google Scholar
Chen, J. D. & Wilkinson, D. 1985 Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55 (18), 18921895.Google Scholar
Cieplak, M. & Robbins, M. O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.Google Scholar
Cieplak, M. & Robbins, M. O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 1150811521.Google Scholar
Conti, M. & Marconi, U. M. B. 2010 Diffusion limited propagation of burning fronts. In WIT Transactions on Ecology and the Environment, vol. 137, pp. 3745. WIT Press.Google Scholar
Daccord, G. G., Nittmann, J. & Stanley, H. E. 1986 Radial viscous fingers and diffusion-limited aggregation: fractal dimension and growth sites. Phys. Rev. Lett. 56 (4), 336339.Google Scholar
Ferer, M., Ji, C., Bromhal, G. S., Cook, J., Ahmadi, G. & Smith, D. H. 2004 Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70 (1), 016303.Google Scholar
Fernández, J. F., Albarrán, J. M., Fernandez, J. F. & Albarran, J. M. 1990 Diffusion-limited aggregation with surface tension: scaling of viscous fingering. Phys. Rev. Lett. 64 (18), 21332136.Google Scholar
Fernandez, J. F., Rangel, R. & Rivero, J. 1991 Crossover length from invasion percolation to diffusion-limited aggregation in porous media. Phys. Rev. Lett. 67 (21), 29582961.Google Scholar
Frette, V., Feder, J., Jøssang, T. & Meakin, P. 1992 Buoyancy-driven fluid migration in porous media. Phys. Rev. Lett. 68, 31643167.Google Scholar
Furuberg, L., Måløy, K. J. & Feder, J. 1996 Intermittent behavior in slow drainage. Phys. Rev. E 53 (1), 966977.Google Scholar
Gjennestad, M. A., Vassvik, M., Kjelstrup, S. & Hansen, A. 2018 Stable and efficient time integration of a dynamic pore network model for two-phase flow in porous media. Frontiers Phys. 6, 56.Google Scholar
Haines, W. B. 1930 Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agri. Sci. 20 (1), 97116.Google Scholar
Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50 (2), 228241.Google Scholar
Holtzman, R. & Juanes, R. 2010 Crossover from fingering to fracturing in deformable disordered media. Phys. Rev. E 82 (4), 046305.Google Scholar
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.Google Scholar
Holtzman, R., Szulczewski, M. L. & Juanes, R. 2012 Capillary fracturing in granular media. Phys. Rev. Lett. 108 (26), 264504.Google Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271311.Google Scholar
Joekar-Niasar, V. & Hassanizadeh, S. M. 2012 Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42 (18), 18951976.Google Scholar
Joekar-Niasar, V., Hassanizadeh, S. M. & Dahle, H. K. 2010 Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech. 655, 3871.Google Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.Google Scholar
Kadanoff, L. P. 1985 Simulating hydrodynamics: a pedestrian model. J. Stat. Phys. 39 (3–4), 267283.Google Scholar
Knudsen, H. A. & Hansen, A. 2002 Relation between pressure and fractional flow in two-phase flow in porous media. Phys. Rev. E 65 (5), 056310.Google Scholar
Lee, H., Gupta, A., Hatton, T. A. & Doyle, P. S. 2017 Creating isolated liquid compartments using photopatterned obstacles in microfluidics. Phys. Rev. A 7 (4), 044013.Google Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.Google Scholar
Lenormand, R. & Zarcone, C. 1985 Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54 (20), 22262229.Google Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.Google Scholar
Li, S., Lowengrub, J. S., Fontana, J. & Palffy-Muhoray, P. 2009 Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett. 102 (17), 174501.Google Scholar
Måløy, K. J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55 (24), 26882691.Google Scholar
Måløy, K. J., Furuberg, L., Feder, J. & Jossang, T. 1992 Dynamics of slow drainage in porous media. Phys. Rev. Lett. 68 (14), 21612164.Google Scholar
Meakin, P., Feder, J., Frette, V. & Jøssang, T. 1992 Invasion percolation in a destabilizing gradient. Phys. Rev. A 46 (6), 33573368.Google Scholar
Meakin, P. & Tartakovsky, A. M. 2009 Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47 (3), RG3002.Google Scholar
Meakin, P., Tolman, S. & Blumen, A. 1989 Diffusion-limited aggregation. Proc. R. Soc. Lond. A 423 (1864), 133148.Google Scholar
Moebius, F. & Or, D. 2012 Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377 (1), 406415.Google Scholar
Niemeyer, L., Pietronero, L. & Wiesmann, H. J. 1984 Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52 (12), 10331036.Google Scholar
Nittmann, J., Daccord, G. & Stanley, H. E. 1985 Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314 (6007), 141144.Google Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.Google Scholar
Paterson, L. 1981 Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113, 513529.Google Scholar
Primkulov, B. K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., MacMinn, C. W. & Juanes, R. 2018 Quasistatic fluid–fluid displacement in porous media: invasion–percolation through a wetting transition. Phys. Rev. Fluids 3, 104001.Google Scholar
Rabbani, H. S., Zhao, B., Juanes, R. & Shokri, N. 2018 Pore geometry control of apparent wetting in porous media. Sci. Rep. 8 (1), 15729.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M. & Lindsay, H. M. 1986 Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett. 57 (14), 17181721.Google Scholar
Strang, G. 2007 Computational Science and Engineering. Wellesley–Cambridge Press.Google Scholar
Sygouni, V., Tsakiroglou, C. D. & Payatakes, A. C. 2006 Capillary pressure spectrometry: toward a new method for the measurement of the fractional wettability of porous media. Phys. Fluids 18 (5), 053302.Google Scholar
Sygouni, V., Tsakiroglou, C. D. & Payatakes, A. C. 2007 Using wavelets to characterize the wettability of porous materials. Phys. Rev. E 76 (5), 056304.Google Scholar
Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K. J. & Schmittbuhl, J. 2005 Influence of pore-scale disorder on viscous fingering during drainage. Europhys. Lett. 71 (4), 583589.Google Scholar
Trojer, M., Szulczewski, M. L. & Juanes, R. 2015 Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.Google Scholar
Tryggvason, G. & Aref, H. 1983 Numerical experiments on Hele Shaw flow with a sharp interface. J. Fluid Mech. 136, 130.Google Scholar
Wilkinson, D. 1984 Percolation model of immiscible displacement in the presence of buoyancy forces. Phys. Rev. A 30 (1), 520531.Google Scholar
Wilkinson, D. & Willemsen, J. F. 1983 Invasion percolation: a new form of percolation theory. J. Phys. A 16 (14), 33653376.Google Scholar
Witten, T. A., Sander, L. M. & Sander, I. M. 1981 Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (19), 14001403.Google Scholar
Yortsos, Y. C., Xu, B. & Salin, D. 1997 Phase diagram of fully-developed drainage in porous media. Phys. Rev. Lett. 79 (23), 45814584.Google Scholar
Zhao, B., MacMinn, C. W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.Google Scholar

Primkulov Supplementary Movie 1

Video shows the fluid-fluid displacement at Ca=1e-6 and contact angle of 90 deg. The pore-space is colored based on the local pressure, where tones of black, yellow, and white stand for high, intermediate, and low pressures, respectively. The rapid advance of the local interface after the pore-invasion event pressurizes the defending fluid ahead. This overpressure then dissipates. The size of the colored circles at the fluid-fluid front stands for the status of filling: increasing/decreasing size of the colored circle indicates filling/emptying of the pore throat. When the size of the colored circle matches the size of the post, the throat is full. The red, blue, and green colors stand for ``burst'', ``touch'', and ``overlap'' events. The mean radius of the pillars is 1055 microns; the mean hydraulic radius of the throats is 169 microns; the mean distance between the pore centers is 1577 microns.

Download Primkulov Supplementary Movie 1(Video)
Video 28.3 MB

Primkulov Supplementary Movie 2

Video shows the fluid-fluid displacement at Ca=1e-3 and contact angle of 46 deg. The network of throats is colored based on the local flow rates, where the color changes from red to yellow as flowrate changes from high to low. The dominant flow channels are the chains with the darkest colors. In the limit of high capillary numbers, the locations of the dominant flow channels change as the viscous fingers grow. This is best seen by observing the change in colors at a fixed spot ahead of the invading front. The size of the colored circles at the fluid-fluid front stands for the status of filling: increasing/decreasing size of the colored circle indicates filling/emptying of the pore throat. When the size of the colored circle matches the size of the post, the throat is full. The red, blue, and green colors stand for ``burst'', ``touch'', and ``overlap'' events. The mean radius of the pillars is 1055 microns; the mean hydraulic radius of the throats is 169 microns; the mean distance between the pore centers is 1577 microns.

Download Primkulov Supplementary Movie 2(Video)
Video 7.7 MB