Published online by Cambridge University Press: 17 January 2017
Numerical simulations were conducted to understand the different wave configurations associated with the shock-wave reflections over double-concave cylindrical surfaces. The reflectors were generated computationally by changing different geometrical parameters, such as the radii of curvature and the initial wedge angles. The incident-shock-wave Mach number was varied such as to cover subsonic, transonic and supersonic regimes of the flows induced by the incident shock. The study revealed a number of interesting wave features starting from the early stage of the shock interaction and transition to transitioned regular reflection (TRR) over the first concave surface, followed by complex shock reflections over the second one. Two new shock bifurcations have been found over the second wedge reflector, depending on the velocity of the additional wave that appears during the TRR over the first wedge reflector. Unlike the first reflector, the transition from a single-triple-point wave configuration (STP) to a double-triple-point wave configuration (DTP) and back occurred several times on the second reflector, indicating that the flow was capable of retaining the memory of the past events over the entire process.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.