Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T13:19:16.791Z Has data issue: false hasContentIssue false

Sharp transition between coalescence and non-coalescence of sessile drops

Published online by Cambridge University Press:  04 March 2014

Stefan Karpitschka*
Affiliation:
Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
Hans Riegler
Affiliation:
Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
*
Email address for correspondence: [email protected]

Abstract

Unexpectedly, under certain conditions, sessile drops from different but completely miscible liquids do not always coalesce instantaneously upon contact: the drop bodies remain separated in a temporary state of non-coalescence, connected through a thin liquid bridge. Here we investigate the transition between the states of instantaneous coalescence and temporary non-coalescence. Experiments reveal that it is barely influenced by viscosities and absolute surface tensions. The main system control parameters for the transition are the arithmetic means of the three-phase angles, $\overline{\Theta }_{a}$, and the surface tension differences $\Delta \gamma $ between the two liquids. These relevant parameters can be combined into a single system parameter, a specific Marangoni number $\widetilde{M}=3\Delta \gamma /(2\overline{\gamma }\overline{\Theta }_{a}^2)$. This $\widetilde{M}$ universally characterizes the coalescence transition behaviour as a function of both the physicochemical liquid properties and the shape of the liquid body in the contact region. The transition occurs at a certain threshold value $\widetilde{M}_t$ and is sharp within the experimental resolution. The experimentally observed threshold value of $\widetilde{M}_t\approx 2$ agrees quantitatively with values obtained by simulations assuming realistic material parameters. The simulations indicate that the absolute value of $\widetilde{M}_t$ very weakly depends on the molecular diffusivity.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. 2004 Direct visual observation of thermal capillary waves. Science 304, 847850.CrossRefGoogle ScholarPubMed
Borcia, R. & Bestehorn, M. 2010 Different behaviors of delayed fusion between drops with miscible liquids. Phys. Rev. E 82, 036312.CrossRefGoogle ScholarPubMed
Borcia, R. & Bestehorn, M. 2013 Partial coalescence of sessile drops with different miscible liquids. Langmuir 29, 44264429.CrossRefGoogle ScholarPubMed
Borcia, R., Borcia, I. D. & Bestehorn, M. 2012 Nonlinear dynamics of thin liquid films consisting of two miscible components. Phys. Rev. E 86, 056319.CrossRefGoogle ScholarPubMed
Castrejón-Pita, J. R., Kubiak, K. J., Castrejón-Pita, A. A., Wilson, M. C. T. & Hutchings, I. M. 2013 Mixing and internal dynamics of droplets impacting on a solid surface. Phys. Rev. E 88, 023023.CrossRefGoogle ScholarPubMed
Christopher, G. F., Bergstein, J., Poon, M., Nguyen, C. & Anna, S. L. 2009 Coalescence and splitting of confined droplets at microfluidic junctions. Lab on a Chip 9, 11021109.CrossRefGoogle ScholarPubMed
Cussler, E. L. 1997 Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press.Google Scholar
Eddi, A., Winkels, K. G. & Snoeijer, J. H. 2013 Influence of droplet geometry on the coalescence of low viscosity drops. Phys. Rev. Lett. 111, 144502.CrossRefGoogle ScholarPubMed
Fermeglia, M. & Torriano, G. 1999 Density, viscosity, and refractive index for binary systems of n-C16 and four nonlinear alkanes at 298.15K. J. Chem. Engng Data 44, 965969.CrossRefGoogle Scholar
Hanyak, M., Darhuber, A. A. & Ren, M. S. 2011 Surfactant-induced delay of leveling of inkjet-printed patterns. J. Appl. Phys. 109, 074905.CrossRefGoogle Scholar
Hernandez-Sanchez, J. F., Lubbers, L. A., Eddi, A. & Snoeijer, J. H. 2012 Symmetric and asymmetric coalescence of drops on a substrate. Phys. Rev. Lett. 109, 184502.CrossRefGoogle ScholarPubMed
Ihnen, A. C., Petrock, A. M., Chou, T., Fuchs, B. E. & Lee, W. Y. 2012 Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing. ACS Appl. Mater. Interfaces 4, 46914699.CrossRefGoogle ScholarPubMed
Israelachvili, J. 2002 Intermolecular and Surface Forces. 2nd edn. Academic Press.Google Scholar
Karpitschka, S. & Riegler, H. 2010 Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids. Langmuir 26, 1182311829.CrossRefGoogle Scholar
Karpitschka, S. & Riegler, H. 2012 Non-coalescence of sessile drops from different but miscible liquids: Hydrodynamic analysis of the twin drop contour as self stabilizing, traveling wave. Phys. Rev. Lett. 109, 066103.CrossRefGoogle Scholar
Körösi, G. & Kováts, E. sz. 1981 Density and surface tension of 83 organic liquids. J. Chem. Engng Data 26, 323332.CrossRefGoogle Scholar
Leenaars, A. F. M., Huethorst, J. A. M. & van Oekel, J. J. 1990 Marangoni drying: a new extremely clean drying process. Langmuir 6, 17011703.CrossRefGoogle Scholar
Li, Z. G., Ando, K., Yu, J. Q., Liu, A. Q., Zhang, J. B. & Ohl, C. D. 2011 Fast on-demand droplet fusion using transient cavitation bubbles. Lab on a Chip 11, 18791885.CrossRefGoogle ScholarPubMed
Marra, J. & Huethorst, J. A. M. 1991 Physical principles of marangoni drying. Langmuir 7, 27482755.CrossRefGoogle Scholar
Matar, O. K. & Craster, R. V. 2001 Models for marangoni drying. Phys. Fluids 13, 18691883.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Riegler, H. & Lazar, P. 2008 Delayed coalescence behavior of droplets with completely miscible liquids. Langmuir 24, 63956398.CrossRefGoogle ScholarPubMed
Ristenpart, W. D., McCalla, P. M., Roy, R. V. & Stone, H. A. 2006 Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett. 97, 064501.CrossRefGoogle ScholarPubMed
Sellier, M., Nock, V., Gaubert, C. & Verdier, C. 2013 Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling. Eur. Phys. J. Spec. Top. 219, 131141.CrossRefGoogle Scholar
Sellier, M., Nock, V. & Verdier, C. 2011 Self-propelling, coalescing droplets. Intl J. Multiphase Flow 37, 462468.CrossRefGoogle Scholar
Shrestha, L. K., Aramaki, K., Kato, H., Takase, Y. & Kunieda, H. 2006 Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems. Langmuir 22, 83378345.CrossRefGoogle ScholarPubMed
Stringer, J. & Derby, B. 2010 Formation and stability of lines produced by inkjet printing. Langmuir 26, 1036510372.CrossRefGoogle ScholarPubMed
Thiele, U., Todorova, D. V. & Lopez, H. 2013 Gradient dynamics for films of mixtures and suspensions: dewetting triggered by coupled film height and concentration fluctuations. Phys. Rev. Lett. 111, 117801.CrossRefGoogle ScholarPubMed
Wohlfarth, C. & Wohlfahrt, B.1997 Surface Tension of Pure Liquids and Binary Liquid Mixtures In Landolt Börnstein, IV (Physical Chemistry), vol. 16. Springer.Google Scholar
Wohlfarth, C. & Wohlfahrt, B.2001 Viscosity of Pure Organic Liquids and Binary Mixtures In Landolt Börnstein, IV (Physical Chemistry), vol. 18. Springer.Google Scholar

Karpitschka and Riegler supplementary movie

One drop of Tetradecane and one drop of Pentadecane spread on the same substrate. They contact each other at three phase angles above the critical value; Coalescence is (initially) immediate.

Download Karpitschka and Riegler supplementary movie(Video)
Video 140.8 KB

Karpitschka and Riegler supplementary movie

One drop of Tetradecane and one drop of Pentadecane spread on the same substrate. They contact each other at Three phase angles below the critical value; Coalescence is suppressed.

Download Karpitschka and Riegler supplementary movie(Video)
Video 129.8 KB

Karpitschka and Riegler supplementary movie

One drop of Tetradecane and one drop of Hexadecane spread on the same substrate. They contact each other at three phase angles above the critical value; Coalescence is (initially) immediate.

Download Karpitschka and Riegler supplementary movie(Video)
Video 112.5 KB

Karpitschka and Riegler supplementary movie

One drop of Tetradecane and one drop of Hexadecane spread on the same substrate. They contact each other at three phase angles above the critical value; Coalescence is suppressed.

Download Karpitschka and Riegler supplementary movie(Video)
Video 107.1 KB
Supplementary material: PDF

Karpitschka and Riegler supplementary material

Supplementary material

Download Karpitschka and Riegler supplementary material(PDF)
PDF 209.7 KB