Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T15:11:28.217Z Has data issue: false hasContentIssue false

Settling-driven instability in two-component stably stratified Hele-Shaw flows

Published online by Cambridge University Press:  22 March 2018

Rafael M. Oliveira
Affiliation:
Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
Eckart Meiburg*
Affiliation:
Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate the onset of instability in a stably stratified two-component fluid in a vertical Hele-Shaw cell when the unstably stratified scalar has a settling velocity. This linear stability problem is analysed on the basis of Darcy’s law, for constant-gradient base states. The settling velocity is found to trigger a novel instability mode characterized by pairs of inclined waves. For unequal diffusivities, this new settling-driven mode competes with the traditional double-diffusive mode. Below a critical value of the settling velocity, the double-diffusive elevator mode dominates, while, above this threshold, the inclined waves associated with the settling-driven instability exhibit faster growth. The analysis yields neutral stability curves and allows for the discussion of various asymptotic limits.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsinan, A., Meiburg, E. & Garaud, P. 2017 A settling-driven instability in two-component, stably stratified fluids. J. Fluid Mech. 816, 243267.Google Scholar
Cooper, C. A., Glass, R. J. & Tyler, S. W. 1997 Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 33 (4), 517526.Google Scholar
Cooper, C. A., Glass, R. J. & Tyler, S. W. 2001 Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res. 37 (9), 23232332.Google Scholar
Dobkins, T. A. 1981 Improved methods to determine hydrodynamic fracture height. J. Petrol. Tech. 33 (04), 719726.Google Scholar
Griffiths, R. W. 1981 Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221248.Google Scholar
Imhoff, P. T. & Green, T. 1988 Experimental investigation of double-diffusive groundwater fingers. J. Fluid Mech. 188, 363382.Google Scholar
Karimi-Fard, M., Charrier-Mojtabi, M. C. & Mojtabi, A. 1999 Onset of stationary and oscillatory convection in a tilted porous cavity saturated with a binary fluid: linear stability analysis. Phys. Fluids 11 (1346), 13461358.Google Scholar
Liang, F., Sayed, M., Al-Munstasheri, G. A., Chang, F. F. & Li, L. 2016 A comprehensive review on proppant technologies. Petroleum 2, 2639.Google Scholar
Medrano, M., Garaud, P. & Stellmach, S. 2014 Double-diffusive mixing in stellar interiors in the presence of horizontal gradients. Astrophys. J. Lett. 792 (L30), 15.Google Scholar
Murray, B. T. & Chen, C. F. 1989 Double-diffusive convection in a porous medium. J. Fluid Mech. 201, 147166.Google Scholar
Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resour. Res. 4 (3), 553560.Google Scholar
Nield, D. A. & Bejan, A. 2017 Convection in Porous Media. Springer.Google Scholar
Pringle, S. E. & Glass, R. J. 2002 Double-diffusive finger convection: influence of concentration at fixed buoyancy ratio. J. Fluid Mech. 462, 161183.Google Scholar
Pringle, S. E., Glass, R. J. & Cooper, C. A. 2002 Double-diffusive finger convection in a Hele-Shaw cell: an experiment exploring the evolution of concentration fields, length scales and mass transfer. Trans. Porous Med. 47, 195214.Google Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.Google Scholar
Reali, J. F., Garaud, P., Alsinan, A. & Meiburg, E. 2017 Layer formation in sedimentary fingering convection. J. Fluid Mech. 816, 268305.Google Scholar
Ruddick, B. & Richards, K. 2003 Oceanic thermohaline intrusions: observations. Prog. Oceanogr. 56, 499527.Google Scholar
Rudraiah, N., Srimani, P. K. & Friedrich, R. 1982 Finite amplitude convection in a two-component fluid saturated porous layer. Intl J. Heat Mass Transfer 25 (5), 715722.Google Scholar
Taunton, J. W., Lightfoot, E. N. & Green, T. 1972 Thermohaline instability and salt fingers in a porous medium. Phys. Fluids 15 (5), 748753.Google Scholar
Traxler, A., Garaud, P. & Stellmach, S. 2011 Numerically determined transport laws for fingering (‘thermohaline’) convection in astrophysics. Astrophys. J. Lett. 728 (L29), 15.Google Scholar
Tsai, P. A., Riesing, K. & Stone, H. A. 2013 Density-driven convection enhanced by an inclined boundary: implications for geological CO2 storage. Phys. Rev. E 87, 011003(R).Google Scholar
Turner, J. S. 1985 Multicomponent convection. Annu. Rev. Fluid Mech. 17, 1144.Google Scholar
Valko, P. & Economides, M. J. 1995 Hydraulic Fracture Mechanics. Wiley.Google Scholar