Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T03:36:03.089Z Has data issue: false hasContentIssue false

Scaling laws for the propulsive performance of three-dimensional pitching propulsors

Published online by Cambridge University Press:  03 June 2019

Fatma Ayancik*
Affiliation:
Department of Mechanical Engineering, Lehigh University, Bethlehem, PA 18015, USA
Qiang Zhong
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, USA
Daniel B. Quinn
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, USA
Aaron Brandes
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, USA
Hilary Bart-Smith
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, USA
Keith W. Moored
Affiliation:
Department of Mechanical Engineering, Lehigh University, Bethlehem, PA 18015, USA
*
Email address for correspondence: [email protected]

Abstract

Scaling laws for the thrust production and energetics of self-propelled or fixed-velocity three-dimensional rigid propulsors undergoing pitching motions are presented. The scaling relations extend the two-dimensional scaling laws presented in Moored & Quinn (AIAA J., 2018, pp. 1–15) by accounting for the added mass of a finite-span propulsor, the downwash/upwash effects from the trailing vortex system of a propulsor and the elliptical topology of shedding trailing-edge vortices. The novel three-dimensional scaling laws are validated with self-propelled inviscid simulations and fixed-velocity experiments over a range of reduced frequencies, Strouhal numbers and aspect ratios relevant to bio-inspired propulsion. The scaling laws elucidate the dominant flow physics behind the thrust production and energetics of pitching bio-propulsors, and they provide guidance for the design of bio-inspired propulsive systems.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The online version of this article has been updated since original publication. A notice detailing the changes has also been published at https://doi.org/10.1017/flm.2019.489.

References

Akoz, E. & Moored, K. W. 2018 Unsteady propulsion by an intermittent swimming gait. J. Fluid Mech. 834, 149172.Google Scholar
Andersen, A., Pesavento, U. & Wang, Z. J. 2005 Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.Google Scholar
Ansari, S. A., Żbikowski, R. & Knowles, K. 2006 Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Aerosp. Sci. 42 (2), 129172.Google Scholar
Babinsky, H., Stevens, P., Jones, A. R., Bernal, L. P. & Ol, M. V. 2016 Low order modelling of lift forces for unsteady pitching and surging wings. In 54th AIAA Aerospace Sciences Meeting, AIAA, 2016–0290.Google Scholar
Berman, G. J. & Wang, Z. J. 2007 Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153168.Google Scholar
Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S. & Verzicco, R. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17 (11), 113601.Google Scholar
Brennen, C. E.1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010. Naval Civil Engineering Laboratory.Google Scholar
Bryant, M., Gomez, J. C. & Garcia, E. 2013 Reduced-order aerodynamic modeling of flapping wing energy harvesting at low Reynolds number. AIAA J. 51 (12), 27712782.Google Scholar
Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.Google Scholar
Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.Google Scholar
Cheng, H. K. & Murillo, L. E. 1984 Lunate-tail swimming propulsion as a problem of curved lifting line in unsteady flow. Part 1. Asymptotic theory. J. Fluid Mech. 143, 327350.Google Scholar
Chopra, M. G. 1976 Large amplitude lunate-tail theory of fish locomotion. J. Fluid Mech. 74 (1), 161182.Google Scholar
Chopra, M. G. & Kambe, T. 1977 Hydromechanics of lunate-tail swimming propulsion. Part 2. J. Fluid Mech. 79 (1), 4969.Google Scholar
Das, A., Shukla, R. K. & Govardhan, R. N. 2016 Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil. J. Fluid Mech. 800, 307326.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.Google Scholar
Dong, H., Mittal, R., Bozkurttas, M. & Najjar, F. 2005 Wake structure and performance of finite aspect-ratio flapping foils. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, 2005–0081.Google Scholar
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.Google Scholar
Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Expl Biol. 202 (18), 23932412.Google Scholar
Eloy, C. 2013 On the best design for undulatory swimming. J. Fluid Mech. 717, 4889.Google Scholar
Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H. & Bart-Smith, H. 2016 Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3 (3), 124.Google Scholar
Floryan, D., Van Buren, T., Rowley, C. W. & Smits, A. J. 2017 Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386397.Google Scholar
Garrick, I. E.1936 Propulsion of a flapping and oscillating airfoil. NACA Tech. Rep. 567.Google Scholar
Gomez, J. C., Bryant, M. & Garcia, E. 2014 Low-order modeling of the unsteady aerodynamics in flapping wings. J. Aircraft 52 (5), 15861595.Google Scholar
Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 615, 211220.Google Scholar
Han, J. S., Chang, J. W. & Han, J. H. 2017 An aerodynamic model for insect flapping wings in forward flight. Bioinspir. Biomim. 12 (3), 036004.Google Scholar
Karpouzian, G., Spedding, G. & Cheng, H. K. 1990 Lunate-tail swimming propulsion. Part 2. Performance analysis. J. Fluid Mech. 210, 329351.Google Scholar
King, J. T., Kumar, R. & Green, M. A. 2018 Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel. Phys. Rev. Fluids 3 (3), 034701.Google Scholar
Krasny, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65 (2), 292313.Google Scholar
Lighthill, M. J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9 (2), 305317.Google Scholar
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44 (2), 265301.Google Scholar
McCune, J. E. & Tavares, T. S. 1993 Perspective: unsteady wing theory – the Kármán/Sears legacy. Trans. ASME J. Fluids Engng 115 (4), 548560.Google Scholar
Moored, K. W. 2018 Unsteady three-dimensional boundary element method for self-propelled bio-inspired locomotion. Comput. Fluids 167, 324340.Google Scholar
Moored, K. W. & Quinn, D. B. 2018 Inviscid scaling laws of a self-propelled pitching airfoil. AIAA J. 115.Google Scholar
Moriche, M., Flores, O. & García-Villalba, M. 2017 On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number. J. Fluid Mech. 828, 395423.Google Scholar
Munk, M. M.1925 Note on the air forces on a wing caused by pitching. NACA Tech. Rep. 217.Google Scholar
Munson, B. R., Young, D. F. & Okiishi, T. 1990 Fundamentals of Fluid Mechanics. John Wiley.Google Scholar
Pesavento, U. & Wang, Z. J. 2004 Falling paper: Navier–Stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett. 93 (14), 144501.Google Scholar
Prandtl, L.1920 Theory of lifting surfaces. NACA Tech. Rep. 9.Google Scholar
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2014a Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.Google Scholar
Quinn, D. B., Moored, K. W., Dewey, P. A. & Smits, A. J. 2014b Unsteady propulsion near a solid boundary. J. Fluid Mech. 742, 152170.Google Scholar
Read, D. A., Hover, F. S. & Triantafyllou, M. S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17 (1), 163183.Google Scholar
Saadat, M., Fish, F. E., Domel, A. G., Di Santo, V., Lauder, G. V. & Haj-Hariri, H. 2017 On the rules for aquatic locomotion. Phys. Rev. Fluids 2 (8), 083102.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sambilay, V. C. Jr 1990 Interrelationships between swimming speed, caudal fin aspect ratio and body length of fishes. Fishbyte 8 (3), 1620.Google Scholar
Scherer, J. O.1968 Experimental and theoretical investigation of large amplitude oscillation foil propulsion systems. Tech. Rep. TR-662-1-F.Google Scholar
Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.Google Scholar
Traub, L. W. 2004 Analysis and estimation of the lift components of hovering insects. J. Aircraft 41 (2), 284289.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.Google Scholar
Von Ellenrieder, K. D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.Google Scholar
Wang, Q., Goosen, J. F. L. & Van Keulen, F. 2016 A predictive quasi-steady model of aerodynamic loads on flapping wings. J. Fluid Mech. 800, 688719.Google Scholar
Wang, Q., Goosen, J. F. L. & van Keulen, F. 2017 An efficient fluid–structure interaction model for optimizing twistable flapping wings. J. Fluids Struct. 73, 8299.Google Scholar
Wang, W. B., Hu, R. F., Xu, S. J. & Wu, Z. N. 2013 Influence of aspect ratio on tumbling plates. J. Fluid Mech. 733, 650679.Google Scholar
Wang, Z. J., Birch, J. M. & Dickinson, M. H. 2004 Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J. Expl Biol. 207 (3), 449460.Google Scholar
Webb, P. W. 2002 Kinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottom. J. Expl Biol. 205 (14), 21252134.Google Scholar
Zhu, Q., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 2002 Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 128.Google Scholar