Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T20:44:23.787Z Has data issue: false hasContentIssue false

Roughness, bluntness, and angle-of-attack effects on hypersonic boundary-layer transition

Published online by Cambridge University Press:  28 March 2006

H. T. Nagamatsu
Affiliation:
General Electric Research Laboratory, Schenectady, New York
B. C. Graber
Affiliation:
General Electric Research Laboratory, Schenectady, New York
R. E. Sheer
Affiliation:
General Electric Research Laboratory, Schenectady, New York

Abstract

An investigation was conducted in a hypersonic shock tunnel to study the laminar boundary-layer transition on a highly cooled 10° cone of 4 ft. length over the Mach-number range of 8·5 to 10·5 with a stagnation temperature of 1400 °K. The effects on transition of tip surface roughness, tip bluntness, and ± 2° angle of attack were investigated. With fast-response, thin film surface heat-transfer gauges, it was possible to detect the passage of turbulent bursts which appeared at the beginning of transition. Pitot-tube surveys and schlieren photographs of the boundary layer were obtained to verify the interpretation of the heat-transfer data. It was found that the surface roughness greatly promoted transition in the proper Reynolds-number range. The Reynolds numbers for the beginning and end of transition at the 8·5 Mach-number location were 3·8 × 106−9·6 × 106 and 2·2 × 106−4·2 × 106 for the smooth sharp tip and rough sharp tip respectively. The local skin-friction data, determined from the Pitot-tube survey, agreed with the heat-transfer data obtained through the modified Reynolds analogy. The tip-bluntness data showed a strong delay in the beginning of transition for a cone base-to-tip diameter ratio of 20, approximately a 35% increase in Reynolds number over that of the smooth sharp-tip case. The angle-of-attack data indicated the cross flow to have a strong influence on transition by promoting it on the sheltered side of the cone and delaying it on the windward side.

Type
Research Article
Copyright
© 1966 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brinich, P. F. & Diaconis, N. S. 1952 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 2742.
Brinich, P. F. & Sands, N. 1957 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3979.
Chapman, D. R. & Kester, R. H. 1953 J. Aero. Sci. 20, 44.
Coles, D. 1954 J. Aero. Sci. 21, 43.
Demetriades, A. 1958 J. Aero. Sci. 25, 57.
Hill, F. K. 1956 J. Aero. Sci. 23, 3.
Jedlicka, J. R., Wilkins, M. E. & Seiff, A. 1954 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3342.
Kármán, T. Von 1934 J. Aero. Sci. 1, 1.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 1.
Korkegi, R. H. 1956 J. Aero. Sci. 23, 9.
Laufer, J. & Verbalovich, T. 1960 J. Fluid Mech. 9, 25.
Lees, L. 1947 Nat. Adv. Comm. Aero., Wash., Tech. Rep. no. 876.
Lees, L. & Reshotko, E. 1962 J. Fluid Mech. 12, 55.
Levensteins, Z. J. 1963 U.S. Naval Ord. Lab. Publ.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Little, W. J. 1963 Arnold Eng. Dev. Ctr. Rep. no. TDR 63190.
Lobb, K. R., Winkler, E. M. & Persh, J. 1955 U.S. Naval Ord. Lab. Rep. no. 3880.
Lyons, W. C. & Sheetz, N. W. 1961 U.S. Naval Ord. Lab. Rep. no. 61–83.
Nagamatsu, H. T., Geiger, R. E. & Sheer, R. E. 1959 J. ARS, 29, 332.
Nagamatsu, H. T., Graber, B. C. & Sheer, R. E. 1965 Phys. Fluids, 8, 211.
Nagamatsu, H. T. & Sheer, R. E. 1964 Proc. AIAA Entry Technology Conf., p. 136, Williamsburg, Virginia.
Nagamatsu, H. T., Weil, J. A. & Sheer, R. E. 1962 J. ARS, 32, 533.
Nagamatsu, H. T., Workman, J. B. & Sheer, R. E. 1961 J. Aero. Sci. 28, 83.
Persh, J. 1955a U.S. Naval Ord. Lab. Rep. no. 3854.
Persh, J. 1955b U.S. Naval Ord. Lab. Rep. no. 4099.
Potter, J. L. & Whitfield, J. D. 1962 J. Fluid Mech. 12, 50.
Reshotko, E. 1957 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 4152.
Schlichting, H. 1960 Boundary Layer Theory. New York: McGraw-Hill.
Schubauer, G. B. & Klebanoff, P. S. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3489.
Schubauer, G. B. & Skramstad, H. K. 1948 Nat. Adv. Comm. Aero., Wash., Tech. Rep. no. 909.
Tollmien, W. 1936 Nat. Adv. Comm. Aero., Wash., Tech. Memo (English translation) no. 792.
Van Driest, E. R. 1951 J. Aero. Sci. 18, 14.
Weil, H. 1951 J. Aero. Sci. 18, 311.
Wilson, R. E. 1950 J. Aero Sci. 17, 58.
Young, A. D. 1953 See Howarath, L., p. 402, Modern Developments in Fluid Dynamics High Speed Flow. Oxford University Press.Google Scholar