Published online by Cambridge University Press: 29 March 2006
This paper describes a detailed experimental study of turbulent boundary-layer development over rough walls in both zero and adverse pressure gradients. In contrast to previous work on this problem the skin friction was determined by pressure tapping the roughness elements and measuring their form drag.
Two wall roughness geometries were chosen each giving a different law of behaviour; they were selected on the basis of their reported behaviour in pipe flow experiments. One type gives a Clauser type roughness function which depends on a Reynolds number based on the shear velocity and on a length associated with the size of the roughness. The other type of roughness (typified by a smooth wall containing a pattern of narrow cavities) has been tested in pipes and it is shown here that these pipe results indicate that the corresponding roughness function does not depend on roughness scale but depends instead on the pipe diameter. In boundary-layer flow the first type of roughness gives a roughness function identical to pipe flow as given by Clauser and verified by Hama and Perry & Joubert. The emphasis of this work is on the second type of roughness in boundary-layer flow. No external length scale associated with the boundary layer that is analogous to pipe diameter has been found, except perhaps for the zero pressure gradient case. However, it has been found that results for both types of roughness correlate with a Reynolds number based on the wall shear velocity and on the distance below the crests of the elements from where the logarithmic distribution of velocity is measured. One important implication of this is that a zero pressure gradient boundary layer with a cavity type rough wall conforms to Rotta's condition of precise self preserving flow. Some other implications of this are also discussed.