Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T14:47:15.177Z Has data issue: false hasContentIssue false

Rigorous entropy formulation of the anelastic liquid equations in an ideal gas

Published online by Cambridge University Press:  08 November 2017

Krzysztof A. Mizerski*
Affiliation:
Department of Magnetism, Institute of Geophysics, Polish Academy of Sciences, ul. Ksiecia Janusza 64, 01-452 Warsaw, Poland
*
Email address for correspondence: [email protected]

Abstract

The point of this short paper is to provide a useful set of equations governing stratified convection, expressed solely in terms of two thermodynamic variables, i.e. the pressure and the entropy, and the velocity field of the flow, free from any additional assumptions about the properties of turbulence. The pressure fluctuation is entirely eliminated from the energy equation and it appears only in the momentum balance, easily removable by taking its curl. This goal is achieved through the well-known anelastic approximation and an assumption of constant thermal diffusivity coefficient. The rigorously derived system of anelastic liquid equations constitutes a useful tool for modelling the dynamics of stellar interiors.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alboussière, T. & Ricard, Y. 2013 Reflections on dissipation associated with thermal convection. J. Fluid Mech. 725, R1.Google Scholar
Almgren, A. S., Bell, J. B., Rendleman, C. A. & Zingale, M. 2006 Low Mach number modeling of type Ia supernovae. I. Hydrodynamics. Astrophys. J. 637, 922936.CrossRefGoogle Scholar
Anufriev, A. P., Jones, C. A. & Soward, A. M. 2005 The Boussinesq and anelastic liquid approximations for convection in the Earth’s core. Phys. Earth Planet. Inter. 152, 163190.CrossRefGoogle Scholar
Bannon, P. R. 1996 On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53 (23), 36183628.2.0.CO;2>CrossRefGoogle Scholar
Berkoff, N. A., Kersalè, E. & Tobias, S. M. 2010 Comparison of the anelastic approximation with fully compressible equations for linear magnetoconvection and magnetic buoyancy. Geophys. Astrophys. Fluid Dyn. 104, 545563.Google Scholar
Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 197.CrossRefGoogle Scholar
Brown, B. P., Vasil, G. M. & Zweibel, E. G. 2012 Energy conservation and gravity waves in sound-proof treatments of stellar interiors. Part I. Anelastic approximations. Astrophys. J. 756, 109.Google Scholar
Gough, D. O. 1969 The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448456.Google Scholar
Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. & Wicht, J. 2011 Anelastic convection-driven dynamo benchmarks. Icarus 216, 120135.Google Scholar
Jones, C. A. & Kuzanyan, K. M. 2009 Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227238.CrossRefGoogle Scholar
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291319.Google Scholar
Klein, R., Achatz, U., Bresch, D., Knio, O. M. & Smolarkiewicz, P. K. 2010 Regime of validity of soundproof atmospheric flow models. J. Atmos. Sci. 67, 32263237.Google Scholar
Lantz, S. R. & Fan, Y. 1999 Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. 121, 247264.Google Scholar
Lecoanet, D., Brown, B. P., Zweibel, E. G., Burns, K. J., Oishi, J. S. & Vasil, G. M. 2014 Conduction in low Mach number flows. I. Linear and weakly nonlinear regimes. Astrophys. J. 797, 94.CrossRefGoogle Scholar
Mizerski, K. A. & Tobias, S. M. 2011 The effect of stratification and compressibility on anelastic convection in a rotating plane layer. Geophys. Astrophys. Fluid Dyn. 105, 566585.Google Scholar
Mizerski, K. A. & Tobias, S. M. 2013 Large-scale convective dynamos in a stratified rotating plane layer. Geophys. Astrophys. Fluid Dyn. 107, 218243.Google Scholar
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173179.2.0.CO;2>CrossRefGoogle Scholar
Rogers, T. M. & Glatzmaier, G. A. 2005a Penetrative convection within the anelastic approximation. Astrophys. J. 620, 432441.Google Scholar
Rogers, T. M. & Glatzmaier, G. A. 2005b Gravity waves in the Sun. Mon. Not. R. Astron. Soc. 364, 11351146.CrossRefGoogle Scholar
Rogers, T. M., Glatzmaier, G. A. & Jones, C. A. 2006 Numerical simulations of penetration and overshoot in the Sun. Astrophys. J. 653, 765773.CrossRefGoogle Scholar