Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T06:07:17.322Z Has data issue: false hasContentIssue false

The rheology of suspensions of charged rigid spheres

Published online by Cambridge University Press:  12 April 2006

William B. Russel
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08540

Abstract

The rheology of particulate dispersions which are strongly influenced by particular types of non-hydrodynamic forces is analysed within the framework of suspension mechanics. Interactions between particles in a homogeneous shear flow without inertia are governed by viscous, electrostatic, London-van der Waals and Brownian forces. The balance among these provides the fluid with a microstructure described quantitatively at dilute concentrations by a pair distribution function and qualitatively by a characteristic interaction length. The bulk rheology follows from the microstructural variables through suitable averaging.

In dilute electrostatically stabilized suspensions of small rigid spheres for which London-van der Waals attractions and hydrodynamic interactions can be ignored, the theory predicts a Newtonian low-shear limit. The analytic expression for the viscosity contains a ϕ2-coefficient which can be quite large and agrees well with experimental data. At higher flow strengths a scale analysis of the pair conservation equation indicates a shear-and strain-thinning rheology, representing a breakdown of the fluid microstructure. Without flow the interaction length attains a maximum determined by the balance between Brownian motion and electrostatic repulsion. A weak shear merely perturbs this balance but generates stresses proportional to the fifth power of the length. With increasing shear rate this length and consequently the shear viscosity are reduced until viscous interactions completely dominate. Asymptotic solutions for an intermediate regime in which Brownian motion and hydrodynamic interactions are both negligible reveal power-law extensional and shear viscosities with non-zero normal stresses.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1970 J. Fluid Mech. 41, 545.
Batchelor, G. K. 1975 J. Fluid Mech. 74, 1.
Batchelor, G. K. 1977 J. Fluid Mech. 83, 97.
Batchelor, G. K. & Green, J. T. 1972 J. Fluid Mech. 56, 401.
Bell, G. M., Levine, S. & McCARTNEY, L. N. 1970 J. Colloid Interface Sci. 33, 335.
Bell, G. M. & Peterson, G. C. 1972 J. Colloid Interface Sci. 41, 542.
Bird, R. B., Warner, H. R. & Evans, D. C. 1971 Fortschritte der Hochpolymeren-Forschung 8, 1.
Booth, F. 1950 Proc. Roy. Soc. A 203, 533.
Booth, F. 1954 J. Chem. Phys. 22, 1956.
Chan, F. S., Blachford, J. & Goring, D. A. I. 1966 J. Colloid Interface Sci. 22, 378.
Freundlich, H. & Jones, A. D. 1936 J. Phys. Chem. 40, 1217.
Fryling, C. F. 1963 J. Colloid Interface Sci. 18, 713.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Hinch, E. J. 1971 The mechanics of suspensions of particles in fluids. Ph.D. thesis, University of Cambridge.
Hinch, E. J. 1976 Brit. Soc. Rheol. Meeting, Bristol.
Hinch, E. J. & Leal, L. G. 1972 J. Fluid Mech. 52, 683.
Hoffman, R. L. 1972 Trans. Soc. Rheol. 16, 155.
Hoffman, R. L. 1974 J. Colloid Interface Sci. 46, 491.
Honig, E. P., Roebersen, G. J. & Wiersema, P. H. 1971 J. Colloid Interface Sci. 36, 97.
Jeffrey, D. J. & Acrivos, A. 1976 A.I.Ch.E. J. 22, 417.
Krieger, I. M. 1972 Adv. Colloid Interface Sci. 3, 111.
Krieger, I. M. & Equiluz, M. 1976 Trans. Soc. Rheol. 20, 29.
Lodge, A. S. & Wu, Y. 1971 Rheol. Acta 10, 539.
Russel, W. B. 1976 J. Colloid Interface Sci. 55, 590.
Saville, D. A. 1977 Ann. Rev. Fluid Mech. 9, 321.
Smoluchowski, M. V. 1917 Z. Phys. Chem. (Leipzig) 92, 129.
Spielman, L. A. 1970 J. Colloid Interface Sci. 33, 562.
Stone-Masui, J. & Watillon, A. 1968 J. Colloid Interface Sci. 28, 187.
Stone-Masui, J. & Watillon, A. 1975 J. Colloid Interface Sci. 52, 479.
Verwey, E. J. W. & Overbeek, J. TH. G. 1948 The Theory of the Stability of Lyophobic Colloids. Elsevier.