Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T23:54:30.444Z Has data issue: false hasContentIssue false

Rheology dictated spreading regimes of a non-isothermal sessile drop

Published online by Cambridge University Press:  11 November 2022

Vishnu Teja Mantripragada
Affiliation:
Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India
Antarip Poddar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India
*
Email address for correspondence: [email protected]

Abstract

In the present work, within the framework of thin film theory, we delineate the interaction between the interfacial dynamics of thermal Marangoni flow and non-Newtonian rheology by considering a spreading droplet over a non-isothermal substrate. The numerical simulations, performed at different equilibrium contact angles $(\theta _e)$, dimensionless thermocapillary strengths $(\beta )$ and shear-dependent viscosities $(n)$, reveal that the fluid rheology nonlinearly influences the mechanisms of disjoining pressure and Marangoni stress. Accordingly, three distinct spreading regimes for non-Newtonian drops arise. Results indicate that the Marangoni film regime, having an approximate linear drop shape, sustains at lower $\theta _e$, higher $\beta$ and $n$ ranges. Also, shear-thickening drops display an early onset of thermocapillary time scale and a steeper advancing front, while their shear-thinning counterparts retain a significant curvature for a much longer time. Contrastingly, the droplet regime is identified by fixed shape and uniform speed $(U)$ at higher $\theta _e$ and lower $(\beta$, $n)$ combinations. Here, an intricate interplay between $\beta$ and $n$ realizes a sharp increase in $U$ for shear thinning compared with its invariance for shear-thickening droplets. The transition regime appears as an intermediate regime between the other two and involves multiple ruptured droplets. In all the regimes, we observe slower (faster) spreading of shear-thinning (thickening) droplets than the Newtonian droplets. In addition, the variations in $n$ cause intense characteristic modulations to spreading attributes like droplet morphology and transient spreading behaviour, and also act as a switching mechanism between different spreading regimes. These unique results may be utilized for superior control of non-isothermal biofluid droplets in microfluidics.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Shah, M. & Petersen, E. 1960 On the flow of a non-Newtonian liquid on a rotating disk. J. Appl. Phys. 31 (6), 963968.10.1063/1.1735785CrossRefGoogle Scholar
Anna, S.L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285309.10.1146/annurev-fluid-122414-034425CrossRefGoogle Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Fluid mechanics, In Dynamics of polymeric liquids, vol. 1, 2nd edn. John Wiley and Sons Inc.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739.10.1103/RevModPhys.81.739Google Scholar
Braun, R.J. 2012 Dynamics of the tear film. Annu. Rev. Fluid Mech. 44, 267297.10.1146/annurev-fluid-120710-101042CrossRefGoogle Scholar
Brzoska, J., Brochard-Wyart, F. & Rondelez, F. 1993 Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9 (8), 22202224.10.1021/la00032a052CrossRefGoogle Scholar
Carré, A. & Eustache, F. 2000 Spreading kinetics of shear-thinning fluids in wetting and dewetting modes. Langmuir 16 (6), 29362941.10.1021/la991021dCrossRefGoogle Scholar
Chaudhury, K. & Chakraborty, S. 2015 Spreading of a droplet over a nonisothermal substrate: multiple scaling regimes. Langmuir 31 (14), 41694175.10.1021/la5047657CrossRefGoogle Scholar
Chen, J.Z., Troian, S.M., Darhuber, A.A. & Wagner, S. 2005 Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys. 97 (1), 014906.10.1063/1.1819979CrossRefGoogle Scholar
Daniel, R.C. & Berg, J.C. 2006 Spreading on and penetration into thin, permeable print media: application to ink-jet printing. Adv. Colloid Interface Sci. 123, 439469.10.1016/j.cis.2006.05.012CrossRefGoogle ScholarPubMed
Deen, W.M. 1998 Analysis of Transport Phenomena, vol. 2. Oxford University Press.Google Scholar
Derjaguin, B. & Kusakov, M. 1936 Contact-line dynamics of a diffuse fluid interface. Izv. Akad. Nauk SSSR Ser. Khim. 5, 741.Google Scholar
Diez, J.A. & Kondic, L. 2001 Contact line instabilities of thin liquid films. Phys. Rev. Lett. 86 (4), 632635.10.1103/PhysRevLett.86.632Google ScholarPubMed
Diez, J.A. & Kondic, L. 2007 On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19 (7), 072107.10.1063/1.2749515CrossRefGoogle Scholar
Dominguez Torres, A., Mac Intyre, J.R., Gomba, J.M., Perazzo, C.A., Correa, P.G., Lopez-Villa, A. & Medina, A. 2020 Contact line motion in axial thermocapillary outward flow. J. Fluid Mech. 892, A8.10.1017/jfm.2020.172CrossRefGoogle Scholar
Eddi, A., Winkels, K.G. & Snoeijer, J.H. 2013 Short time dynamics of viscous drop spreading. Phys. Fluids 25 (1), 013102.CrossRefGoogle Scholar
Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257, 463483.10.1017/S0022112093003167CrossRefGoogle Scholar
Ehrhard, P. & Davis, S.H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229, 365388.10.1017/S0022112091003063CrossRefGoogle Scholar
Flitton, J. & King, J. 2004 Surface-tension-driven dewetting of Newtonian and power-law fluids. J. Engng Maths 50 (2), 241266.CrossRefGoogle Scholar
Garg, V., Kamat, P.M., Anthony, C.R., Thete, S.S. & Basaran, O.A. 2017 Self-similar rupture of thin films of power-law fluids on a substrate. J. Fluid Mech. 826, 455483.10.1017/jfm.2017.446CrossRefGoogle Scholar
Gaskell, P., Jimack, P., Sellier, M. & Thompson, H. 2004 Efficient and accurate time adaptive multigrid simulations of droplet spreading. Intl J. Numer. Meth. Fluids 45 (11), 11611186.CrossRefGoogle Scholar
Gomba, J. & Homsy, G. 2009 Analytical solutions for partially wetting two-dimensional droplets. Langmuir 25 (10), 56845691.10.1021/la804335aCrossRefGoogle ScholarPubMed
Gomba, J.M. & Homsy, G.M. 2010 Regimes of thermocapillary migration of droplets under partial wetting conditions. J. Fluid Mech. 647, 125142.10.1017/S0022112010000078Google Scholar
Goodwin, R. & Homsy, G. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3 (4), 515528.CrossRefGoogle Scholar
Gorla, R.S.R. 2001 Rupture of thin power-law liquid film on a cylinder. Trans. ASME J. Appl. Mech. 68 (2), 294297.10.1115/1.1355033CrossRefGoogle Scholar
Hoang, A. & Kavehpour, H. 2011 Dynamics of nanoscale precursor film near a moving contact line of spreading drops. Phys. Rev. Lett. 106 (25), 254501.10.1103/PhysRevLett.106.254501CrossRefGoogle Scholar
Hu, B. & Kieweg, S.L. 2012 The effect of surface tension on the gravity-driven thin film flow of Newtonian and power-law fluids. Comput. Fluids 64, 8390.10.1016/j.compfluid.2012.05.009CrossRefGoogle ScholarPubMed
Hwang, S., Litt, M. & Forsman, W. 1969 Rheological properties of mucus. Rheol. Acta 8 (4), 438448.10.1007/BF01976227Google Scholar
Kalliadasis, S., Kiyashko, A. & Demekhin, E. 2003 Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 475, 377408.CrossRefGoogle Scholar
Karapetsas, G., Sahu, K.C., Sefiane, K. & Matar, O.K. 2014 Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. Langmuir 30 (15), 43104321.10.1021/la5002682CrossRefGoogle ScholarPubMed
Kheyfets, V.O. & Kieweg, S.L. 2013 Experimental and numerical models of three-dimensional gravity-driven flow of shear-thinning polymer solutions used in vaginal delivery of microbicides. J. Biomech. Engng 135 (6), 061009.10.1115/1.4024140CrossRefGoogle ScholarPubMed
King, J. 2001 Two generalisations of the thin film equation. Math. Comput. Model. 34 (7-8), 737756.10.1016/S0895-7177(01)00095-4CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Liang, Z.-P., Wang, X.-D., Lee, D.-J., Peng, X.-F. & Su, A. 2009 Spreading dynamics of power-law fluid droplets. J. Phys.: Condens. Matter 21 (46), 464117.Google ScholarPubMed
Mac Intyre, J.R., Gomba, J.M., Perazzo, C.A., Correa, P.G. & Sellier, M. 2018 Thermocapillary migration of droplets under molecular and gravitational forces. J. Fluid Mech. 847, 127.10.1017/jfm.2018.306CrossRefGoogle Scholar
Miladinova, S., Lebon, G. & Toshev, E. 2004 Thin-film flow of a power-law liquid falling down an inclined plate. J. Non-Newtonian Fluid Mech. 122 (1–3), 6978.10.1016/j.jnnfm.2004.01.021CrossRefGoogle Scholar
Mitlin, V.S. & Petviashvili, N.V. 1994 Nonlinear dynamics of dewetting: kinetically stable structures. Phys. Lett. A 192 (5–6), 323326.10.1016/0375-9601(94)90213-5CrossRefGoogle Scholar
Myers, T. 2005 Application of non-Newtonian models to thin film flow. Phys. Rev. E 72 (6), 066302.CrossRefGoogle ScholarPubMed
Nguyen, N.-T., Pang, W.W. & Huang, X. 2006 Sample transport with thermocapillary force for microfluidics. J. Phys.: Conf. Ser. 34, 160.Google Scholar
Noble, P. & Vila, J.-P. 2013 Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations. J. Fluid Mech. 735, 2960.CrossRefGoogle Scholar
Oron, A. & Rosenau, P. 1994 On a nonlinear thermocapillary effect in thin liquid layers. J. Fluid Mech. 273, 361374.10.1017/S0022112094001977CrossRefGoogle Scholar
Perazzo, C.A. & Gratton, J. 2003 Thin film of non-Newtonian fluid on an incline. Phys. Rev. E 67 (1), 016307.CrossRefGoogle Scholar
Perazzo, C.A. & Gratton, J. 2004 Navier–Stokes solutions for parallel flow in rivulets on an inclined plane. J. Fluid Mech. 507, 367379.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2019 a Appl. Phys. Lett. 114 (5), 053701.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 b Electrical switching of a surfactant coated drop in Poiseuille flow. J. Fluid Mech. 870, 2766.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 c Electrorheology of a dilute emulsion of surfactant-covered drops. J. Fluid Mech. 881, 524550.10.1017/jfm.2019.745CrossRefGoogle Scholar
Popescu, M.N., Oshanin, G., Dietrich, S. & Cazabat, A. 2012 Precursor films in wetting phenomena. J. Phys.: Condens. Matter 24 (24), 243102.Google ScholarPubMed
Pratap, V., Moumen, N. & Subramanian, R.S. 2008 Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir 24 (9), 51855193.CrossRefGoogle ScholarPubMed
Rafaï, S., Bonn, D. & Boudaoud, A. 2004 Spreading of non-Newtonian fluids on hydrophilic surfaces. J. Fluid Mech. 513, 7785.10.1017/S0022112004000278CrossRefGoogle Scholar
Ren, W., Trinh, P.H. & Weinan, E. 2015 On the distinguished limits of the navier slip model of the moving contact line problem. J. Fluid Mech. 772, 107126.10.1017/jfm.2015.173CrossRefGoogle Scholar
Ross, A., Wilson, S. & Duffy, B. 1999 Blade coating of a power-law fluid. Phys. Fluids 11 (5), 958970.10.1063/1.869968CrossRefGoogle Scholar
Ruyer-Quil, C., Chakraborty, S. & Dandapat, B. 2012 Wavy regime of a power-law film flow. J. Fluid Mech. 692, 220256.CrossRefGoogle Scholar
Sauleda, M.L., Hsieh, T. -L., Xu, W., Tilton, R.D. & Garoff, S. 2022 Surfactant spreading on a deep subphase: coupling of Marangoni flow and capillary waves. J. Colloid Interface Sci. 614, 511521.10.1016/j.jcis.2022.01.142CrossRefGoogle ScholarPubMed
Schwartz, L.W. & Eley, R.R. 1998 Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 202 (1), 173188.CrossRefGoogle Scholar
Schwartz, L.W., Roy, R.V., Eley, R.R. & Petrash, S. 2001 Dewetting patterns in a drying liquid film. J. Colloid Interface Sci. 234 (2), 363374.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45 (1), 269292.CrossRefGoogle Scholar
Starov, V., Kalinin, V. & Chen, J.-D. 1994 Spreading of liquid drops over dry surfaces. Adv. Colloid Interface Sci. 50, 187221.10.1016/0001-8686(94)80030-8CrossRefGoogle Scholar
Starov, V., Tyatyushkin, A., Velarde, M. & Zhdanov, S. 2003 Spreading of non-Newtonian liquids over solid substrates. J. Colloid Interface Sci. 257 (2), 284290.10.1016/S0021-9797(02)00034-6CrossRefGoogle ScholarPubMed
Stone, H., Stroock, A. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Subramanian, R.S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Sui, Y. 2014 Moving towards the cold region or the hot region? Thermocapillary migration of a droplet attached on a horizontal substrate. Phys. Fluids 26 (9), 092102.10.1063/1.4894077CrossRefGoogle Scholar
Sui, Y. & Spelt, P.D. 2015 Non-isothermal droplet spreading/dewetting and its reversal. J. Fluid Mech. 776, 7495.CrossRefGoogle Scholar
Walburn, F.J. & Schneck, D.J. 1976 A constitutive equation for whole human blood. Biorheology 13 (3), 201210.CrossRefGoogle ScholarPubMed
Wang, X., Lee, D., Peng, X. & Lai, J. 2007 a Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Langmuir 23 (15), 80428047.CrossRefGoogle ScholarPubMed
Wang, X., Zhang, Y., Lee, D. & Peng, X. 2007 b Spreading of completely wetting or partially wetting power-law fluid on solid surface. Langmuir 23 (18), 92589262.CrossRefGoogle ScholarPubMed
Weidner, D. & Schwartz, L. 1994 Contact-line motion of shear-thinning liquids. Phys. Fluids 6 (11), 35353538.CrossRefGoogle Scholar
Won, B.J., Lee, W. & Song, S. 2017 Estimation of the thermocapillary force and its applications to precise droplet control on a microfluidic chip. Sci. Rep. 7 (1), 3062.CrossRefGoogle ScholarPubMed
Xu, Z.-L., Chen, J.-Y., Liu, H.-R., Sahu, K.C. & Ding, H. 2021 Motion of self-rewetting drop on a substrate with a constant temperature gradient. J. Fluid Mech. 915, A116.CrossRefGoogle Scholar
Young, N.O., Goldstein, J.S. & Block, M.J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.10.1017/S0022112059000684CrossRefGoogle Scholar
Yu, T., Malcolm, K., Woolfson, D., Jones, D.S. & Andrews, G.P. 2011 Vaginal gel drug delivery systems: understanding rheological characteristics and performance. Expert Opin. Drug Deliv. 8 (10), 13091322.10.1517/17425247.2011.600119CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Mantripragada and Poddar supplementary material

Mantripragada and Poddar supplementary material

Download Mantripragada and Poddar supplementary material(PDF)
PDF 700 KB