Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-02T19:31:55.807Z Has data issue: false hasContentIssue false

Rheology and shear jamming of frictional ellipses

Published online by Cambridge University Press:  26 June 2018

Martin Trulsson*
Affiliation:
Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
*
Email address for correspondence: [email protected]

Abstract

Understanding and predicting dense granular flows is of importance in geology and industrial applications. Still, most theoretical work has been limited to flows and packings composed of discs or spheres, a narrow subset of all possible packings. To advance our understanding of more realistic flows we here study the granular rheology of ellipses in steady-state flow with a focus on the effects of elongation and interparticle friction. We carry out novel numerical simulations of amorphous granular flows in a shear cell under confining pressure, at constant shear rate and at various aspect ratios. Both frictionless and frictional particles are considered. The various rheological curves follow the semi-empirical constitutive relations previously found for granular flows composed of discs or spheres. At the shear jamming point one finds well-defined packings, all characterised by their own set of critical parameters such as critical packing fraction, effective friction, etc. Packings composed of frictionless or almost frictionless particles are found to have a non-monotonic dependence of the macroscopic friction but a monotonic increase in packing fraction as the aspect ratio increases. For packings composed of particles with high interparticle friction the reverse is found. While frictionless packings are found to be hypostatic (except in the disc limit) frictional packings are remarkably close to the isostaticity point of having three contacts per particle. Both frictional and frictionless packings are found to have an increasing nematic ordering as the aspect ratio increases. The onset of a rolling, rather than sliding, motion between very frictional particles diminish this nematic ordering substantially. These findings put new and previously unknown bounds on the packing ratios and yield criteria for these amorphous packings at shear jamming.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Marroquín, F., Luding, S., Herrmann, H. J. & Vardoulakis, I. 2005 Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304.Google Scholar
Azéma, E., Estrada, N. & Radjaï, F. 2012 Nonlinear effects of particle shape angularity in sheared granular media. Phys. Rev. E 86, 041301.Google Scholar
Azéma, E. & Radjaï, F. 2010 Stress–strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81, 051304.Google Scholar
Azéma, E. & Radjaï, F. 2014 Internal structure of inertial granular flows. Phys. Rev. Lett. 112, 078001.Google Scholar
Azéma, É., Radjaï, F. & Roux, J.-N. 2015 Internal friction and absence of dilatancy of packings of frictionless polygons. Phys. Rev. E 91, 010202.Google Scholar
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480, 355358.Google Scholar
Börzsönyi, T. & Stannarius, R. 2013 Granular materials composed of shape-anisotropic grains. Soft Matt. 9, 74017418.Google Scholar
Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T. & Stannarius, R. 2012 Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google Scholar
Degiuli, E., McElwaine, J. N. & Wyart, M. 2016 Phase diagram for inertial granular flows. Phys. Rev. E 94, 012904.Google Scholar
Delaney, G. W. & Cleary, P. W. 2010 The packing properties of superellipsoids. Europhys. Lett. 89 (3), 34002.Google Scholar
Delaney, G., Weaire, D., Hutzler, S. & Murphy, S. 2005 Random packing of elliptical disks. Phil. Mag. Lett. 85 (2), 8996.Google Scholar
Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F. H., Connelly, R., Torquato, S. & Chaikin, P. M. 2004a Improving the density of jammed disordered packings using ellipsoids. Science 303 (5660), 990993.Google Scholar
Donev, A., Connelly, R., Stillinger, F. H. & Torquato, S. 2007 Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev. E 75, 051304.Google Scholar
Donev, A., Stillinger, F. H., Chaikin, P. M. & Torquato, S. 2004b Unusually dense crystal packings of ellipsoids. Phys. Rev. Lett. 92, 255506.Google Scholar
Edwards, S. F. & Grinev, D. V. 2001 Transmission of stress in granular materials as a problem of statistical mechanics. Phys. A: Stat. Mech. Appl. 302 (1), 162186.Google Scholar
Frette, V., Christensen, K., Malthe-Sorenssen, A., Feder, J., Jossang, T. & Meakin, P. 1996 Avalanche dynamics in a pile of rice. Nature 379 (6560), 4952.Google Scholar
Garcia, X.2010 Modelling the micro-structure and hydraulic properties of sands. PhD thesis, Imperial Collage London.Google Scholar
Guises, R., Xiang, J., Latham, J.-P. & Munjiza, A. 2009 Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granul. Matt. 11 (5), 281292.Google Scholar
Haji-Akbari, A., Engel, M., Keys, A. S., Zheng, X., Petschek, R. G., Palffy-Muhoray, P. & Glotzer, S. C. 2009 Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462 (7274), 773777.Google Scholar
Luding, S. 2008 Introduction to discrete element methods. Eur. J. Environ. Civil Engng 12 (7–8), 785826.Google Scholar
Man, W., Donev, A., Stillinger, F. H., Sullivan, M. T., Russel, W. B., Heeger, D., Inati, S., Torquato, S. & Chaikin, P. M. 2005 Experiments on random packings of ellipsoids. Phys. Rev. Lett. 94, 198001.Google Scholar
Marschall, T. & Teitel, S. 2018 Compression- driven jamming of athermal frictionless spherocylinders in two dimensions. Phys. Rev. E 97, 012905.Google Scholar
Midi, G. D. R. 2004 On dense granular flows. Eur. Phys. J E 14 (4), 341365.Google Scholar
Nagy, D. B., Claudin, P., Börzsönyi, T. & Somfai, E. 2017 Rheology of dense granular flows for elongated particles. Phys. Rev. E 96, 062903.Google Scholar
Peyneau, P.-E. & Roux, J.-N. 2008 Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307.Google Scholar
Schreck, C. F., Xu, N. & O’Hern, C. S. 2010 A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles. Soft Matt. 6, 29602969.Google Scholar
Shen, T., Schreck, C., Chakraborty, B., Freed, D. E. & O’Hern, C. S. 2012 Structural relaxation in dense liquids composed of anisotropic particles. Phys. Rev. E 86, 041303.Google Scholar
Silbert, L. E. 2010 Jamming of frictional spheres and random loose packing. Soft Matt. 6, 29182924.Google Scholar
Tillemans, H.-J. & Herrmann, H. J. 1995 Simulating deformations of granular solids under shear. Physica A 217 (3), 261288.Google Scholar
Torquato, S. & Jiao, Y. 2009 Dense packings of the platonic and archimedean solids. Nature 460 (7257), 876879.Google Scholar
Tóth, L. F. 1964 Regular Figures. Pergamon Press.Google Scholar
Trulsson, M., DeGiuli, E. & Wyart, M. 2017 Effect of friction on dense suspension flows of hard particles. Phys. Rev. E 95, 012605.Google Scholar
Windows-Yule, C. R. K., Scheper, B. J., den Otter, W. K., Parker, D. J. & Thornton, A. R. 2016 Modifying self-assembly and species separation in three-dimensional systems of shape-anisotropic particles. Phys. Rev. E 93, 020901.Google Scholar
Zheng, X. & Palffy-Muhoray, P. 2007 Distance of closest approach of two arbitrary hard ellipses in two dimensions. Phys. Rev. E 75, 061709.Google Scholar