Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T06:49:17.485Z Has data issue: false hasContentIssue false

Revisiting the role of intermittent heat transport towards Reynolds stress anisotropy in convective turbulence

Published online by Cambridge University Press:  24 July 2020

Subharthi Chowdhuri*
Affiliation:
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr Homi Bhaba Road, Pashan, Pune411008, India
Siddharth Kumar
Affiliation:
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr Homi Bhaba Road, Pashan, Pune411008, India
Tirtha Banerjee
Affiliation:
Department of Civil and Environmental Engineering, University of California, Irvine, CA92697, USA
*
Email address for correspondence: [email protected]

Abstract

Thermal plumes are the energy-containing eddy motions that carry heat and momentum in a convective boundary layer. The detailed understanding of their structure is of fundamental interest for a range of applications, from wall-bounded engineering flows to quantifying surface–atmosphere flux exchanges. We address the aspect of Reynolds stress anisotropy associated with the intermittent nature of heat transport in thermal plumes by performing an invariant analysis of the Reynolds stress tensor in an unstable atmospheric surface layer flow, using a field-experimental dataset. Given the intermittent and asymmetric nature of the turbulent heat flux, we formulate this problem in an event-based framework. In this approach, we provide structural descriptions of warm-updraft and cold-downdraft events and investigate the degree of isotropy of the Reynolds stress tensor within these events of different sizes. We discover that only a subset of these events are associated with the least anisotropic turbulence in highly convective conditions. Additionally, intermittent large-heat-flux events are found to contribute substantially to turbulence anisotropy under unstable stratification. Moreover, we find that the sizes related to the maximum value of the degree of isotropy do not correspond to the peak positions of the heat-flux distributions. This is because the vertical velocity fluctuations pertaining to the sizes associated with the maximum heat flux transport a significant amount of streamwise momentum. A preliminary investigation shows that the sizes of the least anisotropic events probably scale with a mixed length scale ($z^{0.5}\lambda ^{0.5}$, where $z$ is the measurement height and $\lambda$ is the large-eddy length scale).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Ferreira, R. T. D. S. & Boberg, T. 1986 Turbulent thermal convection in wide horizontal fluid layers. Exp. Fluids 4 (3), 121141.CrossRefGoogle Scholar
Afzal, N. 1984 Mesolayer theory for turbulent flows. AIAA J. 22 (3), 437439.CrossRefGoogle Scholar
Alfredsson, P. H. & Johansson, A. V. 1984 Time scales in turbulent channel flow. Phys. Fluids 27 (8), 19741981.CrossRefGoogle Scholar
Ali, N., Hamilton, N., Cortina, G., Calaf, M. & Cal, R. B. 2018 Anisotropy stress invariants of thermally stratified wind turbine array boundary layers using large eddy simulations. J. Renew. Energy 10 (1), 013301.CrossRefGoogle Scholar
Antonia, R. A. 1977 Similarity of atmospheric Reynolds shear stress and heat flux fluctuations over a rough surface. Boundary-Layer Meteorol. 12 (3), 351364.CrossRefGoogle Scholar
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13 (1), 131156.CrossRefGoogle Scholar
Arya, S. P. 2001 Introduction to Micrometeorology. Elsevier.Google Scholar
Banerjee, S., Krahl, R., Durst, F. & Zenger, Ch. 2007 Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8 (32), N32.CrossRefGoogle Scholar
Banerjee, T., Katul, G. G., Salesky, S. T. & Chamecki, M. 2015 Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Q. J. R. Meteorol. Soc. 141 (690), 16991711.CrossRefGoogle Scholar
Bershadskii, A., Niemela, J. J., Praskovsky, A. & Sreenivasan, K. R. 2004 Clusterization and intermittency of temperature fluctuations in turbulent convection. Phys. Rev. E 69 (5), 056314.CrossRefGoogle ScholarPubMed
Bou-Zeid, E., Gao, X., Ansorge, C. & Katul, G. G. 2018 On the role of return to isotropy in wall-bounded turbulent flows with buoyancy. J. Fluid Mech. 856, 6178.CrossRefGoogle Scholar
Brugger, P., Katul, G. G., De Roo, F., Kröniger, K., Rotenberg, E., Rohatyn, S. & Mauder, M. 2018 Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows. Phys. Rev. Fluids 3 (5), 054608.CrossRefGoogle Scholar
Buschmann, M. H., Indinger, T. & Gad-el Hak, M. 2009 Near-wall behavior of turbulent wall-bounded flows. Intl J. Heat Fluid Flow 30 (5), 9931006.CrossRefGoogle Scholar
Businger, J. A. 1973 A note on free convection. Boundary-Layer Meteorol. 4 (1–4), 323326.CrossRefGoogle Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13 (1), 457515.CrossRefGoogle Scholar
Celani, A., Mazzino, A. & Vergassola, M. 2001 Thermal plume turbulence. Phys. Fluids 13 (7), 21332135.CrossRefGoogle Scholar
Chamecki, M. 2013 Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys. Fluids 25 (11), 115110.CrossRefGoogle Scholar
Chamecki, M. & Dias, N. L. 2004 The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 130 (603), 27332752.CrossRefGoogle Scholar
Chapman, G. T. & Tobak, M 1985 Observations, theoretical ideas, and modeling of turbulent flows—past, present, and future. In Theoretical Approaches to Turbulence, pp. 19–49. Springer.CrossRefGoogle Scholar
Chiba, O. 1978 Stability dependence of the vertical wind velocity skewness in the atmospheric surface layer. J. Met. Soc. Japan 56 (2), 140142.CrossRefGoogle Scholar
Chiba, O. 1984 A note on the height dependence of the skewness and the kurtosis of the vertical turbulent velocity in the neutral surface layer. Boundary-Layer Meteorol. 29 (4), 313319.CrossRefGoogle Scholar
Choi, K. S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.CrossRefGoogle Scholar
Chowdhuri, S. & Burman, P. K. D. 2020 Representation of the Reynolds stress tensor through quadrant analysis for a near-neutral atmospheric surface layer flow. Environ. Fluid Mech. 20, 5175.CrossRefGoogle Scholar
Chowdhuri, S., McNaughton, K. G. & Prabha, T. V. 2019 An empirical scaling analysis of heat and momentum cospectra above the surface friction layer in a convective boundary layer. Boundary-Layer Meteorol. 170 (2), 257284.CrossRefGoogle Scholar
Chowdhuri, S. & Prabha, T. V. 2019 An evaluation of the dissimilarity in heat and momentum transport through quadrant analysis for an unstable atmospheric surface layer flow. Environ. Fluid Mech. 19 (2), 513542.CrossRefGoogle Scholar
Chu, C. R., Parlange, M. B., Katul, G. G. & Albertson, J. D. 1996 Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res. 32 (6), 16811688.CrossRefGoogle Scholar
Davidson, P. A. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.CrossRefGoogle Scholar
Dey, S., Ravi-Kishore, G., Castro-Orgaz, O. & Ali, S. Z. 2018 Turbulent length scales and anisotropy in submerged turbulent plane offset jets. J. Hydraul. Engng ASCE 145 (2), 04018085.CrossRefGoogle Scholar
Djenidi, L., Agrawal, A. & Antonia, R. A. 2009 Anisotropy measurements in the boundary layer over a flat plate with suction. J. Expl Therm. Fluid Sci. 33 (7), 11061111.CrossRefGoogle Scholar
Djenidi, L. & Tardu, S. F. 2012 On the anisotropy of a low-Reynolds-number grid turbulence. J. Fluid Mech. 702, 332353.CrossRefGoogle Scholar
Donateo, A., Cava, D. & Contini, D. 2017 A case study of the performance of different detrending methods in turbulent-flux estimation. Boundary-Layer Meteorol. 164 (1), 1937.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
Emory, M. & Iaccarino, G. 2014 Visualizing turbulence anisotropy in the spatial domain with componentality contours. In Center for Turbulence Research Annual Research Briefs, pp. 123138. Stanford University.Google Scholar
Fodor, K., Mellado, J. P. & Wilczek, M. 2019 On the role of large-scale updrafts and downdrafts in deviations from Monin-Obukhov similarity theory in free convection. Boundary-Layer Meteorol. 172, 126.CrossRefGoogle Scholar
Garai, A. & Kleissl, J. 2011 Air and surface temperature coupling in the convective atmospheric boundary layer. J. Atmos. Sci. 68 (12), 29452954.CrossRefGoogle Scholar
Garai, A. & Kleissl, J. 2013 Interaction between coherent structures and surface temperature and its effect on ground heat flux in an unstably stratified boundary layer. J. Turbul. 14 (8), 123.CrossRefGoogle Scholar
Gasteuil, Y., Shew, W. L., Gibert, M., Chilla, F., Castaing, B. & Pinton, J. F. 2007 Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh–Bénard convection. Phys. Rev. Lett. 99 (23), 234302.CrossRefGoogle ScholarPubMed
Gad-el Hak, M., Buschmann, M. 2011 Effects of outer scales on the peaks of near-wall Reynolds stresses. In 6th AIAA Theoretical Fluid Mechanics Conference, p. 3933.Google Scholar
Haugen, D. A., Kaimal, J. C. & Bradley, E. F. 1971 An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 97 (412), 168180.CrossRefGoogle Scholar
Hong, J., Choi, T., Ishikawa, H. & Kim, J. 2004 Turbulence structures in the near-neutral surface layer on the Tibetan plateau. Geophys. Res. Lett. 31 (15), 15.CrossRefGoogle Scholar
Hunt, J. C. R., Kaimal, J. C. & Gaynor, J. E. 1988 Eddy structure in the convective boundary layer-new measurements and new concepts. Q. J. R. Meteorol. Soc. 114 (482), 827858.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jin, L. H., So, R. M. C. & Gatski, T. B. 2003 Equilibrium states of turbulent homogeneous buoyant flows. J. Fluid Mech. 482, 207233.CrossRefGoogle Scholar
Kailasnath, P. & Sreenivasan, K. R. 1993 Zero crossings of velocity fluctuations in turbulent boundary layers. Phys. Fluids 5 (11), 28792885.CrossRefGoogle Scholar
Kaimal, J. C. & Businger, J. A. 1970 Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9 (4), 612620.2.0.CO;2>CrossRefGoogle Scholar
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press.Google Scholar
Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J. & Readings, C. J. 1976 Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33 (11), 21522169.2.0.CO;2>CrossRefGoogle Scholar
Kassinos, S. C., Reynolds, W. C. & Rogers, M. M. 2001 One-point turbulence structure tensors. J.Fluid Mech. 428, 213248.CrossRefGoogle Scholar
Katul, G. G., Albertson, J., Parlange, M., Chu, C. R. & Stricker, H. 1994 Conditional sampling, bursting, and the intermittent structure of sensible heat flux. J. Geophys. Res. 99 (D11), 2286922876.CrossRefGoogle Scholar
Katul, G., Hsieh, C. I., Kuhn, G., Ellsworth, D. & Nie, D. 1997 Turbulent eddy motion at the forest-atmosphere interface. J. Geophys. Res. 102 (D12), 1340913421.CrossRefGoogle Scholar
Khanna, S. & Brasseur, J. G. 1997 Analysis of Monin–Obukhov similarity from large-eddy simulation. J. Fluid Mech. 345, 251286.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Könözsy, L. 2019 A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows. Springer Nature.CrossRefGoogle Scholar
Krogstad, P. Å. 2013 Development of turbulence statistics in the near field behind multi-scale grids. In TSFP Digital Library Online, pp. 16. Begel House Inc.Google Scholar
Krogstad, P. Å. & Torbergsen, L. E. 2000 Invariant analysis of turbulent pipe flow. Flow Turbul. Combust. 64 (3), 161181.CrossRefGoogle Scholar
Kurien, S. & Sreenivasan, K. R. 2000 Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence. Phys. Rev. E 62 (2), 2206.CrossRefGoogle ScholarPubMed
Li, D. & Bou-Zeid, E. 2011 Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 140 (2), 243262.CrossRefGoogle Scholar
Li, Q., Gentine, P., Mellado, J. P. & McColl, K. A. 2018 Implications of nonlocal transport and conditionally averaged statistics on Monin–Obukhov similarity theory and Townsend's attached eddy hypothesis. J. Atmos. Sci. 75 (10), 34033431.CrossRefGoogle Scholar
Liu, H., Yuan, R., Mei, J., Sun, J., Liu, Q. & Wang, Y. 2017 Scale properties of anisotropic and isotropic turbulence in the urban surface layer. Boundary-Layer Meteorol. 165 (2), 277294.CrossRefGoogle Scholar
Liu, L., Hu, F. & Cheng, X. L. 2011 Probability density functions of turbulent velocity and temperature fluctuations in the unstable atmospheric surface layer. J. Geophys. Res. 116, D12117.CrossRefGoogle Scholar
Lotfy, E. R., Abbas, A. A., Zaki, S. A. & Harun, Z. 2019 Characteristics of turbulent coherent structures in atmospheric flow under different shear–buoyancy conditions. Boundary-Layer Meteorol. 173, 127.CrossRefGoogle Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Lumley, J. L. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82 (1), 161178.CrossRefGoogle Scholar
Lyu, R., Hu, F., Liu, L., Xu, J. & Cheng, X. 2018 High-order statistics of temperature fluctuations in an unstable atmospheric surface layer over grassland. Adv. Atmos. Sci. 35 (10), 12651276.CrossRefGoogle Scholar
Majumdar, S. N. 1999 Persistence in nonequilibrium systems. Curr. Sci. 77, 370375.Google Scholar
McBean, G. A. 1974 The turbulent transfer mechanisms: a time domain analysis. Q. J. R. Meteorol. Soc. 100 (423), 5366.CrossRefGoogle Scholar
McBean, G. A. & Elliott, J. A. 1975 The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J. Atmos. Sci. 32 (4), 753766.2.0.CO;2>CrossRefGoogle Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
Metzger, M., McKeon, B. J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365 (1852), 859876.CrossRefGoogle ScholarPubMed
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT.Google Scholar
Nagano, Y. & Tagawa, M. 1988 Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157185.CrossRefGoogle Scholar
Nakagawa, H. & Nezu, I. 1977 Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech. 80 (1), 99128.CrossRefGoogle Scholar
Narasimha, R., Kumar, S. R., Prabhu, A. & Kailas, S. V. 2007 Turbulent flux events in a nearly neutral atmospheric boundary layer. Phil. Trans. R. Soc. Lond. A 365 (1852), 841858.CrossRefGoogle Scholar
Panofsky, H. A. 1974 The atmospheric boundary layer below 150 meters. Annu. Rev. Fluid Mech. 6 (1), 147177.CrossRefGoogle Scholar
Panofsky, H. A., Tennekes, H., Lenschow, D. H. & Wyngaard, J. C. 1977 The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol. 11 (3), 355361.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pouransari, Z., Biferale, L. & Johansson, A. V. 2015 Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets. Phys. Fluids 27 (2), 025102.CrossRefGoogle Scholar
Radenković, D. R., Burazer, J. M. & Novković, Ð. M. 2014 Anisotropy analysis of turbulent swirl flow. FME Trans. 42 (1), 1925.CrossRefGoogle Scholar
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48 (2), 339352.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Ross, S. M. 2014 Introduction to Probability and Statistics for Engineers and Scientists. Academic.Google Scholar
Salesky, S. T. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.CrossRefGoogle Scholar
Salesky, S. T., Chamecki, M. & Bou-Zeid, E. 2017 On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol. 163 (1), 4168.CrossRefGoogle Scholar
Shafi, H. S. & Antonia, R. A. 1995 Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids 18 (3), 213215.CrossRefGoogle Scholar
Shang, X. D., Qiu, X. L., Tong, P. & Xia, K. Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90 (7), 074501.CrossRefGoogle ScholarPubMed
Smedman, A. S., Högström, U., Hunt, J. C. R. & Sahlée, E. 2007 Heat/mass transfer in the slightly unstable atmospheric surface layer. Q. J. R. Meteorol. Soc. 133 (622), 3751.CrossRefGoogle Scholar
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1979 Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech. 94 (4), 745775.CrossRefGoogle Scholar
Sreenivasan, K. R. & Bershadskii, A. 2006 Clustering properties in turbulent signals. J. Stat. Phys. 125 (5–6), 11411153.CrossRefGoogle Scholar
Sreenivasan, K. R., Prabhu, A. & Narasimha, R. 1983 Zero-crossings in turbulent signals. J. Fluid Mech. 137, 251272.CrossRefGoogle Scholar
Stiperski, I. & Calaf, M. 2018 Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q. J. R. Meteorol. Soc. 144 (712), 641657.CrossRefGoogle ScholarPubMed
Student, , 1908 Probable error of a correlation coefficient. Biometrika 6, 302310.CrossRefGoogle Scholar
Stull, R. B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers.CrossRefGoogle Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 465478.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Tong, C. & Ding, M. 2020 Velocity-defect laws, log law and logarithmic friction law in the convective atmospheric boundary layer. J. Fluid Mech. 883, A36.CrossRefGoogle Scholar
Vickers, D. & Mahrt, L. 1997 Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean Technol. 14 (3), 512526.2.0.CO;2>CrossRefGoogle Scholar
Wallace, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.CrossRefGoogle Scholar
Wilczak, J. M. 1984 Large-scale eddies in the unstably stratified atmospheric surface layer, part I: velocity and temperature structure. J. Atmos. Sci. 41 (24), 35373550.2.0.CO;2>CrossRefGoogle Scholar
Willis, G. E. & Deardorff, J. W. 1976 On the use of Taylor's translation hypothesis for diffusion in the mixed layer. Q. J. R. Meteorol. Soc. 102 (434), 817822.CrossRefGoogle Scholar
Wyngaard, J. C. 2010 Turbulence in the Atmosphere. Cambridge University Press.CrossRefGoogle Scholar
Wyngaard, J. C., Coté, O. R. & Izumi, Y. 1971 Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci. 28 (7), 11711182.2.0.CO;2>CrossRefGoogle Scholar
Yee, E., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A. & Bowers, J. F. 1993 Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorol. 65 (1–2), 69109.CrossRefGoogle Scholar
Yeung, P. K. & Brasseur, J. G. 1991 The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids 3 (5), 884897.CrossRefGoogle Scholar
Zhou, Q. & Xia, K. Q. 2011 Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 684, 192203.CrossRefGoogle Scholar
Zhou, S. Q. & Xia, K. Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89 (18), 184502.CrossRefGoogle ScholarPubMed
Zhuang, Y. 1995 Dynamics and energetics of convective plumes in the atmospheric surface layer. J. Atmos. Sci. 52 (10), 17121722.2.0.CO;2>CrossRefGoogle Scholar
Zou, J., Zhou, B. & Sun, J. 2017 Impact of eddy characteristics on turbulent heat and momentum fluxes in the urban roughness sublayer. Boundary-Layer Meteorol. 164 (1), 3962.CrossRefGoogle Scholar
Supplementary material: PDF

Chowdhuri et al. supplementary material

Figures S1-S3

Download Chowdhuri et al. supplementary material(PDF)
PDF 981.4 KB