Published online by Cambridge University Press: 09 February 2005
A long-wavelength weakly nonlinear analysis is used to investigate the possibility for resonant energy exchange between low-mode internal waves and counter-rotating roll vortices known as Langmuir circulation. The analysis is based on a two-layer ocean model in which the Langmuir circulation is confined to the upper layer and counter-propagating internal waves travel along the sharp thermocline normal to the axes of the vortices. An asymptotically consistent description of the slow-time behaviour is obtained by making a WKBJ approximation to treat the comparatively high-frequency internal-wave reflections identified in Part 1. When the vortices and waves are modelled as linearly neutral modes, the resulting dynamics take the form of nonlinear oscillations. The theory suggests that Langmuir cells may transiently lose stability to standing internal-wave disturbances whose nodes are aligned with the cell downwelling zones. An exact solution of the Langmuir-circulation–standing-wave interaction is used to gain insight into the nonlinear instability mechanism. As in Part 1, the modification of the linear internal-wave dynamics by the Craik–Leibovich ‘vortex force’ is found to be crucial to the interaction.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.