Published online by Cambridge University Press: 26 April 2006
This work documents the spatial development of a triad of instability waves consisting of a plane TS mode and a pair of oblique modes with equal-opposite wave angles which are undergoing subharmonic transition in Falkner–Skan boundary layers with adverse pressure gradients. The motivation for this study is that for wings with zero or moderate sweep angles, transition is most likely to occur in the adverse pressure gradient region past the maximum thickness point and, starting with low initial amplitudes, subharmonic mode transition is expected to be the predominant mechanism for the first growth of of three-dimensional modes. The experiment follows that of Corke & Mangano (1989) in which the disturbances to produce the triad of waves are introduced by a spanwise array of heating wires located near Branch I. The initial conditions are carefully controlled. These include the initial amplitudes, frequencies, relative phase and oblique wave angles. The basic flow consisted of a Falkner–Skan (Hartree) boundary layer with a dimensionless pressure gradient parameter in the range -0.06 [les ] βH [les ] -0.09. The frequency of the TS wave was selected to be near the most amplified based on linear theory. The frequency of the oblique waves was the subharmonic of the TS frequency. The oblique wave angles were set to give the largest secondary growth (≈ 60°). Compared to similar conditions in a Blasius boundary layer, the adverse pressure gradient was observed to lead to an extra rapid growth of the two- and three-dimensional modes. In this there was a relatively larger maximum amplitude of the fundamental mode and considerably shortened amplitude saturation region compared to zero pressure gradient cases. Analysis of these results includes frequency spectra, the wall-normal distributions of each mode amplitude, and mean velocity profiles. Finally, the streamwise amplitude development is compared with the amplitude model from the nonlinear critical layer analysis of Goldstein & Lee (1992).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.