Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-20T06:45:31.467Z Has data issue: false hasContentIssue false

A regularised force-doublet framework for self-propelled microswimmers

Published online by Cambridge University Press:  11 April 2025

Alexander Peter Hoover*
Affiliation:
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115, USA
Priya Shilpa Boindala
Affiliation:
Department of Mathematics and Statistics, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
Ricardo Cortez
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
*
Corresponding author: Alexander Peter Hoover, [email protected]

Abstract

A single particle representation of a self-propelled microorganism in a viscous incompressible fluid is derived based on regularised Stokeslets in three dimensions. The formulation is developed from a limiting process in which two regularised Stokeslets of equal and opposite strength but with different size regularisation parameters approach each other. A parameter that captures the size difference in regularisation provides the asymmetry needed for propulsion. We show that the resulting limit is the superposition of a regularised stresslet and a potential dipole. The model framework is then explored relative to the model parameters to provide insight into their selection. The particular case of two identical particles swimming next to each other is presented and their stability is investigated. Additional flow characteristics are incorporated into the modelling framework with in the addition of a rotlet double to characterise rotational flows present during swimming. Lastly, we show the versatility of deriving the model in the method of regularised Stokeslets framework to model wall effects of an infinite plane wall using the method of images.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R. 2008 The method of images for regularized Stokeslets. J. Comput. Phys. 227 (9), 46004616.CrossRefGoogle Scholar
Alexander, G.P., Pooley, C.M. & Yeomans, J.M. 2008 Scattering of low-Reynolds-number swimmers. Phys. Rev. E 78 (4), 045302.CrossRefGoogle ScholarPubMed
Bárdfalvy, D. et al. 2024 Collective motion in a sheet of microswimmers. Commun. Phys. 7 (1), 93.CrossRefGoogle Scholar
BenJacob, E. & Levine, H. 2006 Self engineering capabilities of bacteria. J.R.Soc. Interface 3 (6), 197214.CrossRefGoogle ScholarPubMed
Berke, A.P., Turner, L., Berg, H.C. & LaugaE 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. 101 (3), 14.Google ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Cogan, N.G., Cortez, R. & Fauci, L. 2005 Modeling physiological resistance in bacterial biofilms. Bull. Math. Biol. 67 (4), 831853.CrossRefGoogle ScholarPubMed
Cogan, N.G. & Wolgemuth, C.W. 2011 Two-dimensional patterns in bacterial veils arise from self-generated, three-dimensional fluid flows. Bull. Math. Biol. 73 (1), 212229.CrossRefGoogle ScholarPubMed
Copeland, M.F. & Weibel, D.B. 2009 Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matt. 5 (6), 11741187.CrossRefGoogle Scholar
Cortez, R. 2001 Method of regularized Stokeslets. J. Sci. Comput. 23 (4), 2041225.Google Scholar
Cortez, R., Cummins, B., Leiderman, K. & Varela, D. 2010 Computation of three-dimensional Brinkman flows using regularized methods. J. Comput. Phys. 229 (20), 76097624.CrossRefGoogle Scholar
Cortez, R., Fauci, L. & Medovikov, A. 2005 The method of regularized stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys. Fluids 17 (3), 031504.CrossRefGoogle Scholar
Cortez, R. & Varela, D. 2015 A general system of images for regularized Stokeslets and other elements near a plane wall. J. Comput. Phys. 285 (C), 4154.CrossRefGoogle Scholar
Davis, Mark E., Chen, Zhuo & Shin, Dong M. 2008 Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7 (9), 771782.CrossRefGoogle ScholarPubMed
Delmotte, B., Keaveny, E.E., Plouraboué, F. & Climent, E. 2015 Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method. J. Comput. Phys. 302, 524547.CrossRefGoogle Scholar
Dillon, R., Fauci, L. & Gaver, D. 1995 Microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177 (4), 325340.CrossRefGoogle ScholarPubMed
Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S. & Goldstein, R.E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. 108 (27), 1094010945.CrossRefGoogle ScholarPubMed
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 (5), 056601.CrossRefGoogle ScholarPubMed
Eyiyurekli, M., Manley, P., Lelkes, P. & Breen, D. 2008 A computational model of chemotaxis-based cell aggregation. BioSystems 93 (3), 226239.CrossRefGoogle ScholarPubMed
Fung, L., Konkol, A., Ishikawa, T., Larson, B.T., Brunet, T. & Goldstein, R.E. 2023 Swimming, feeding, and inversion of multicellular choanoflagellate sheets. Phys. Rev. Lett. 131 (16), 168401.CrossRefGoogle ScholarPubMed
Gaffney, E.A., Ishimoto, K. & Walker, B.J. 2021 Modelling motility: the mathematics of spermatozoa. Front. Cell Develop. Biol. 9, 710825.CrossRefGoogle ScholarPubMed
Götze, I.O. & Gompper, G. 2010 Mesoscale simulations of hydrodynamic squirmer interactions. Phys. Rev. E 82 (4), 041921.CrossRefGoogle ScholarPubMed
Guasto, J.S., Johnson, K.A. & Gollub, J.P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (16), 168102.CrossRefGoogle ScholarPubMed
Hernandez-Ortiz, J., Stoltz, C. & Graham, M. 2005 Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95 (20), 204501.CrossRefGoogle ScholarPubMed
Hernández-Ortiz, J.P., de, P., Juan, J. & Graham, M.D. 2007 Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. Phys. Rev. Lett. 98 (14), 140602.CrossRefGoogle Scholar
Hernandez-Ortiz, J.P., Underhill, P.T. & Graham, M.D. 2009 Dynamics of confined suspensions of swimming particles. J. Phys.: Condens. Matter 21 (20), 204107.Google ScholarPubMed
Ho, N.H., Leiderman, K. & Olson, S. 2019 A three-dimensional model of flagellar swimming in a Brinkman fluid. J. Fluid Mech. 864, 10881124.CrossRefGoogle Scholar
Ishikawa, T. 2009 Suspension of biomechanics of swimming microbes. J. R. Soc. Interface 6 (39), 120.CrossRefGoogle ScholarPubMed
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K., Gadêlha, H., Gaffney, E.A., Smith, D.J. & Kirkman-Brown, J. 2017 Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118 (12), 124501.CrossRefGoogle ScholarPubMed
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Ishimoto, K., Gaffney, E.A. & Walker, B.J. 2020 Regularized representation of bacterial hydrodynamics. Phys. Rev. Fluids 5 (9), 093101.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102 (715), 161179. arXiv: http://rspa.royalsocietypublishing.org/content/102/715/161.full.pdf+html Google Scholar
Kay, E.R., Leigh, D.A. & Zerbetto, F. 2007 Synthetic molecular motors and mechanical machines. Angew. Chemie Intl Edition 46 (1-2), 72191.CrossRefGoogle ScholarPubMed
LaGrone, J., Cortez, R. & Fauci, L. 2019 Elastohydrodynamics of swimming helices: effects of flexibility and confinement. Phys. Rev. Fluids 4 (3), 033102.CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Lavergne, F.A., Wendehenne, H., Bäuerle, T. & Bechinger, C. 2019 Group formation and cohesion of active particles with visual perception–dependent motility. Science 364 (6435), 7074.CrossRefGoogle ScholarPubMed
Lee, W., Kim, Y., Griffith, B.E. & Lim, S. 2018 Bacterial flagellar bundling and unbundling via polymorphic transformations. Phys. Rev. E 98 (5), 052405.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Liu, D., Keaveny, E.E., Maxey, M.R. & Karniadakis, G.E. 2009 Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys. 228 (10), 35593581.CrossRefGoogle Scholar
Lushi, E. & Peskin, C.S. 2013 Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers. Comput. Struct. 122, 239248.CrossRefGoogle Scholar
Malmsten, M. 2006 Soft drug delivery systems. Soft Matter 2 (9), 760769.CrossRefGoogle ScholarPubMed
Marchetti, M.C., Joanny, J.-F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M. & Simha, R.A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85 (3), 11431189.CrossRefGoogle Scholar
Maxey, M. 2017 Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49 (1), 171193.CrossRefGoogle Scholar
Mehandia, V. & Nott, P.R. 2008 The collective dynamics of self-propelled particles. J.Fluid Mech. 595, 239264.CrossRefGoogle Scholar
Mondal, D., Prabhune, A.G., Ramaswamy, S. & Sharma, P. 2021 Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. Elife 10, e67663.Google Scholar
Nelson, B.J., Kaliakatsos, I.K. & Abbott, J.J. 2010 Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Engng 12 (1), 5585.CrossRefGoogle ScholarPubMed
Nguyen, H.-N., Olson, S.D. & Leiderman, K. 2019 Computation of a regularized brinkmanlet near a plane wall. J. Engng Maths 114 (1), 1941.Google Scholar
Park, J., Kim, Y., Lee, W. & Lim, S. 2022 Modeling of lophotrichous bacteria reveals key factors for swimming reorientation. Sci. Rep-UK 12 (1), 112.Google ScholarPubMed
Park, Y., Kim, Y. & Lim, S. 2019 Locomotion of a single-flagellated bacterium. J. Fluid Mech. 859, 586612.CrossRefGoogle Scholar
Ryan, S.D. 2019 Role of hydrodynamic interactions in chemotaxis of bacterial populations. Phys. Biol. 17 (1), 016003.CrossRefGoogle ScholarPubMed
Saintillan, D. 2018 Rheology of active fluids. Annu. Rev. Fluid Mech. 50 (1), 563592.CrossRefGoogle Scholar
Schuech, R., Cortez, R. & Fauci, L. 2022 Performance of a helical microswimmer traversing a discrete viscoelastic network with dynamic remodeling. Fluids 7 (8), 257.CrossRefGoogle Scholar
Schwarzendahl, F.J. & Mazza, M.G. 2018 Maximum in density heterogeneities of active swimmers. Soft Matter 14 (23), 46664678.CrossRefGoogle ScholarPubMed
Schwarzendahl, F.J. & Mazza, M.G. 2019 Hydrodynamic interactions dominate the structure of active swimmers’ pair distribution functions. J. Chem. Phys. 150 (18), 184902.CrossRefGoogle ScholarPubMed
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Stenhammar, J., Nardini, C., Nash, R.W., Marenduzzo, D. & Morozov, A. 2017 Role of correlations in the collective behavior of microswimmer suspensions. Phys. Rev. Lett. 119 (2), 028005.CrossRefGoogle ScholarPubMed
Strong, S.P., Freedman, B., Bialek, W. & Koberle, R. 1998 Adapatation and optimal chemotactic strategy from E. coli . Phys Rev 57 (4), 4604.Google Scholar
Tseng, H.-C. 2022 Jeffery’s orbit leading to the foundation of flow-induced orientation in modern fiber composite materials. J. Non-Newton. Fluid Mech. 309, 104926.CrossRefGoogle Scholar
Underhill, P.T., Hernandez-Ortiz, J.P. & Graham, M.D. 2008 Diffusion and spatial correlations in suspensions of swimming particles. Phys. Rev. Lett 100 (24), 248101.CrossRefGoogle ScholarPubMed
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Lowen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc Natl Acad. Sci. 109 (36), 1430814313.CrossRefGoogle ScholarPubMed
Wioland, H., Lushi, E. & Goldstein, R.E. 2016 Directed collective motion of bacteria under channel confinement. New J. Phys. 18 (7), 075002.CrossRefGoogle Scholar
Wróbel, J.K., Cortez, R. & Fauci, L. 2014 Modeling viscoelastic networks in Stokes flow. Phys. Fluids 26 (11), 113102.CrossRefGoogle Scholar
Wróbel, J.K., Cortez, R., Varela, D. & Fauci, L. 2016 Regularized image system for Stokes flow outside a solid sphere. J. Comput. Phys. 317, 165184.CrossRefGoogle Scholar
Wu, X.L. & Libchaber, A. 2000 Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84 (13), 30203020.CrossRefGoogle Scholar
Yamamoto, T. & Sano, M. 2018 Theoretical model of chirality-induced helical self-propulsion. Phys. Rev. E 97 (1), 1–1,012607.CrossRefGoogle ScholarPubMed
Yang, P., Gai, S. & Lin, J. 2012 Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41 (9), 36793698.CrossRefGoogle ScholarPubMed
Yeo, K. & Maxey, M.R. 2010 Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229 (6), 24012421.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2016 Emergent behavior in active colloids. J. Phys.: Condens. Matter 28 (25), 253001.Google Scholar