Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T00:14:45.369Z Has data issue: false hasContentIssue false

Refraction and shielding of sound from a source in a jet

Published online by Cambridge University Press:  11 April 2006

T. F. Balsa
Affiliation:
Power Generation and Propulsion Laboratory, General Electric Company, Corporate Research and Development, Schenectady, New York 12301

Abstract

In typical jet-noise measurements one is almost always interested in the pressure in the far field as kR → ∞. The purpose of this paper is to show that this limit is singular in the sense of matched asymptotic expansions. The inner solution (kfixed, R→ ∞) is given by geometric acoustics, whereas the outer is given by the so-called acoustic-shielding solution (k fixed, R→ ∞). A suitable composite solution is also constructed.

Now jet-noise measurements are always made at fixed and finite values of R (typically 50 jet diameters) and from these measurements one would like to infer the value of pR at R = ∞, where p is the acoustic pressure. One interesting and somewhat unexpected result of this paper is that the value of pR at infinity cannot be inferred from these measurements above a certain frequency. In other words, in order to obtain accurate estimates of pR at infinity for higher and higher frequencies, one has to be further and further away from the jet!

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atvars, J., Schubert, L. K., Grande, E. & Ribner, H. S. 1966 N.A.S.A. Contractor Rep. CR-494.
Balsa, T. F. 1975 J. Fluid Mech. 70, 17.
Balsa, T. F. 1976 J. Fluid Mech. 74, 193.
Blokhintsev, D. I. 1946 J. Acoust. Soc. Am. 18, 322.
Courant, R. & Hilbert, D. 1966 Methods of Mathematical Physics, vol. 2. Interscience.
Csanady, G. T. 1966 J. Fluid Mech. 26, 183.
Ffowcs Williams, J. E. 1974 J. Fluid Mech. 66, 791.
Gottlieb, P. 1960 J. Acoust. Soc. Am. 32, 1117.
Hayes, W. D. 1970 Proc. Roy. Soc. A 320, 209.
Hoch, R. G. et al. 1973 J. Sound Vib. 28, 649.
Lewis, R. M. 1965 Arch. Rat. Mech. Anal. 20, 191.
Lighthill, M. J. 1952 Proc. Roy. Soc. A 211, 564.
Lilley, G. M. 1972 AFAPL-TR-72-53, vol. 4.
Lush, P. A. 1972 J. Fluid Mech. 46, 477.
Mani, R. 1972 J. Sound Vib. 25, 337.
Mani, R. 1974 J. Fluid Mech. 64, 611.
Mani, R. 1975a J. Fluid Mech 73, 753.
Mani, R. 1975b J. Fluid Mech 73, 779.
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. McGraw-Hill.
Pao, S. 1973 J. Fluid Mech. 59, 451.
Proudman, I. 1952 Proc. Roy. Soc. A 214, 119.
Ribner, H. S. 1959 J. Acoust. Soc. Am. 31, 245.
Ribner, H. S. 1962 Univ. Toronto, Inst. Aerophys. Rep. UTIA 86.
Ribner, H. S. 1969 J. Fluid Mech. 38, 1.
Schubert, L. K. 1972 J. Acoust. Soc. Am 51, 439, 447.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Stanford, California: Parabolic Press.