Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-22T09:51:02.306Z Has data issue: false hasContentIssue false

Properties and asymptotics of water waves nonlinear interaction coefficient

Published online by Cambridge University Press:  21 April 2025

Vladimir Geogjaev*
Affiliation:
Shirshov Institute of Oceanology of Russian Academy of Sciences, Nakhimovsky pr. 36, Moscow 117997, Russia Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld.1, Moscow 121205, Russia
*
Corresponding author: Vladimir Geogjaev, [email protected]

Abstract

The Hasselmann equation for the nonlinear interactions of deep-water gravity waves differs from other four-wave kinetic equations by the interaction coefficient. The explicit formula for this coefficient (e.g. Krasitskii, J. Fluid. Mech., vol. 272, 1994, pp. 1–20; Zakharov, Eur. J. Mech. B/Fluids, vol. 18. issue 3, 1999, pp. 327–344) is of great complexity and leaves its properties obscured. We provide analytical results for the behaviour of the coefficient in different domains. The Phillips curve and discrete interaction approximation-like quadruplets are studied in detail. The coupling coefficient for the long–short wave interactions is calculated and found to be surprisingly small. This smallness greatly reduces the non-locality of the interactions.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, J.-H., 2007 Wave modelling – the state of the art. Prog. Oceanogr. 75 (4), 603674.Google Scholar
Annenkov, S.Yu & Shrira, V.I. 2001 Numerical modelling of water-wave evolution based on the Zakharov equation. J. Fluid Mech. 449, 341371.CrossRefGoogle Scholar
Annenkov, S.Yu & Shrira, V.I. 2013 Large-time evolution of statistical moments of wind-wave fields. J. Fluid Mech. 726, 517546.CrossRefGoogle Scholar
Badulin, S.I., Pushkarev, A.N., Resio, D. & Zakharov, V.E. 2005 Self-similarity of wind-driven seas. Nonlinear Process. Geophys. 12 (6), 891945.CrossRefGoogle Scholar
Benoit, M. 2005 Evaluation of methods to compute the non-linear quadruplet interactions for deep-water wave spectra. In 5th International Symposium on Ocean Wave Measurement and Analysis (WAVES’2005), 52, ASCE , Madrid, Spain, pp 110.Google Scholar
Dungey, J.C. & Hui, W.H. 1979 Nonlinear energy transfer in a narrow gravity-wave spectrum, Proc. R. Soc. Lond. A: Math. Phys. Sci. 368. 239265.Google Scholar
Dyachenko, A.I., Kachulin, D.I. & Zakharov, V.E. 2017 Super compact equation for water waves. J. Fluid Mech. 828, 661679.CrossRefGoogle Scholar
Dyachenko, A.I. & Zakharov, V.E. 1994 Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (2), 144148.CrossRefGoogle Scholar
Dysthe, K.B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A: Math. Phys. Sci. 369, 105114.Google Scholar
Gagnaire-Renou, E., Benoit, M. & Badulin, S.I. 2011 On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech. 669, 178213.CrossRefGoogle Scholar
Geogjaev, V.V. & Zakharov, V.E. 2017 Numerical and analytical calculations of the parameters of power-law spectra for deep water gravity waves. J. Expl Theor. Phys. Lett. 106 (3), 184187.CrossRefGoogle Scholar
Hashimoto, N. & Kawaguchi, K. 2001 Extension and modification of discrete interaction approximation (DIA) for computing nonlinear energy transfer of gravity wave spectra. In Fourth International Symposium on Ocean Wave Measurement and Analysis, Proceedings, “American Society of Civil Engineers”, vol. 1, pp. 530539.Google Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Hasselmann, S., Hasselmann, K., Allender, J.H. & Barnett, T.P. 1985 Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 15 (11), 13781391.2.0.CO;2>CrossRefGoogle Scholar
Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P.A.E.M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press, section ‘III.3.2 Nonlinear transfer’.CrossRefGoogle Scholar
Komen, G.J., Hasselmann, S. & Hasselmann, K. 1984 On the existence of a fully developed wind–sea spectrum. J. Phys. Oceanogr. 14 (8), 12711285.2.0.CO;2>CrossRefGoogle Scholar
Krasitskii, V.P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.CrossRefGoogle Scholar
Lavrenov, I.V. 2003 Wind-Waves in Oceans: Dynamics and Numerical Simulations. Springer Science & Business Media, 2003.CrossRefGoogle Scholar
Lavrova, O.Yu 1983 On the lateral instability of waves on the surface of a finite-depth fluid. Izv. Atmos. Ocean. Phys. 19 (10), 807810.Google Scholar
Longuet-Higgins, M.S. 1976 On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model. Proc. R. Soc. Lond. A 347, 311328.Google Scholar
Phillips, O.M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. J. Fluid Mech. 9 (2), 193217.CrossRefGoogle Scholar
Tolman, H.L. 2004 Inverse modeling of discrete interaction approximations for nonlinear interactions in wind waves. Ocean Model. 6 (3–4), 405422.CrossRefGoogle Scholar
Webb, D.J. 1978 Non-linear transfers between sea waves. Deep Sea Res. 25 (3), 279298.CrossRefGoogle Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.CrossRefGoogle Scholar
Zakharov, V.E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. B/Fluids 18 (3), 327344.CrossRefGoogle Scholar
Zakharov, V.E., Badulin, S.I., Geogjaev, V.V. & Pushkarev, A.N. 2019 Weak-turbulent theory of wind-driven sea. Earth Space Sci. 6 (4), 540556.CrossRefGoogle Scholar
Zakharov, V.E. & Filonenko, N.N. 1966 Energy spectrum for stochastic oscillations of the surface of liquid. Dokl. Acad. Nauk SSSR 1960, 12921295.Google Scholar