Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T09:16:46.089Z Has data issue: false hasContentIssue false

Predictions of the transient loading exerted on circular cylinders by arbitrary pressure waves in air

Published online by Cambridge University Press:  02 September 2020

H. L. Gauch
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
O. Lines
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
V. Bisio
Affiliation:
Baker Hughes, Via Felice Matteucci 2, 50127Firenze FI, Italy
S. Rossin
Affiliation:
Baker Hughes, Via Felice Matteucci 2, 50127Firenze FI, Italy
F. Montomoli
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
V. L. Tagarielli*
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

This study investigates the transient loading exerted on rigid circular cylinders by impinging pressure waves of arbitrary shape, amplitude and time duration. Numerical calculations are used to predict the transient flow around the cylinder for wide ranges of geometric and loading parameters. An analytical model is developed to predict the transient loading history on the cylinder and this is found to be in good agreement with the results of the numerical calculations. Both models are used to identify and explore the different loading regimes, and to construct non-dimensional maps to allow direct application of the findings of this study to the design of structures exposed to the threat of pressure wave loading.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Petroleum Institute 2006 API RP 2FB - Recommended Practice for the Design of Offshore Facilities Against Fire and Blast Loading. API.Google Scholar
Banks, J. W., Aslam, T. & Rider, W. J. 2008 On sub-linear convergence for linearly degenerate waves in capturing schemes. J. Comput. Phys. 227 (14), 69857002.CrossRefGoogle Scholar
Ben-Dor, G., Takayama, K. & Kawauchi, T. 1980 The transition from regular to Mach reflexion and from Mach to regular reflexion in truly non-stationary flows. J. Fluid Mech. 100 (1), 147160.CrossRefGoogle Scholar
Benim, A. C., Pasqualotto, E. & Suh, S. H. 2008 Modelling turbulent flow past a circular cylinder by RANS, URANS, LES and DES. Prog. Comput. Fluid Dyn. 8 (5), 299307.CrossRefGoogle Scholar
Blevins, R. D. 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold.Google Scholar
Catalano, P. & Amato, M. 2003 An evaluation of RANS turbulence modelling for aerodynamic applications. Aerosp. Sci. Technol. 7 (7), 493509.CrossRefGoogle Scholar
Chang, E. J. & Maxey, M. R. 1995 Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J. Fluid Mech. 303, 133153.CrossRefGoogle Scholar
Courant, R. 1948 Supersonic Flow and Shock Waves. Interscience.Google Scholar
Det Norske Veritas 2010. DNV-RP-C204: Design Against Accidental Loads. Available at: https://www.dnvgl.com/oilgas/download/dnvgl-rp-c204-design-against-accidental-loads.html.Google Scholar
Drikakis, D., Ofengeim, D., Timofeev, E. & Voionovich, P. 1997 Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods. J. Fluids Struct. 11 (6), 665692.CrossRefGoogle Scholar
Friedman, M. B. & Shaw, R. 1960 Diffraction of pulses by cylindrical obstacles of arbitrary cross section. Trans. ASME J. Appl. Mech. 29 (1), 4046.CrossRefGoogle Scholar
Gauch, H. L., Bisio, V., Rossin, S., Montomoli, F. & Tagarielli, V. L. 2019 a Predictions of the transient loading on box-like objects by arbitrary pressure waves in air. Proc. R. Soc. Lond. A 475 (2229), 20190360.Google ScholarPubMed
Gauch, H. L., Bisio, V., Rossin, S., Montomoli, F. & Tagarielli, V. L. 2019 b Transient loading on turbomachinery packages due to pressure waves caused by accidental deflagration events. Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. Phoenix, Arizona, USA. June 17–21, 2019. V009T27A021. ASME.Google Scholar
Gauch, H. L., Montomoli, F. & Tagarielli, V. L. 2018 On the role of fluid-structure interaction on structural loading by pressure waves in air. Trans. ASME J. Appl. Mech. 85, 11.CrossRefGoogle Scholar
Greenshields, C. J., Weller, H. G., Gasparini, L. & Reese, J. M. 2010 Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Intl J. Numer. Meth. Fluids 63 (1), 121.Google Scholar
Hoerner, S. F. 1965 Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, 3rd ed.Hoerner Fluid Dynamics.Google Scholar
Iaccarino, G., Ooi, A., Durbin, P. A. & Behnia, M. 2003 Reynolds averaged simulation of unsteady separated flow. Intl J. Heat Fluid Flow 24 (2), 147156.CrossRefGoogle Scholar
Kleine, H., Timofeev, E., Hakkaki-Fard, A. & Skews, B. 2014 The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces. J. Fluid Mech. 740, 4760.CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (1), 241282.CrossRefGoogle Scholar
van Leer, B. 1974 Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (4), 361370.CrossRefGoogle Scholar
Liepmann, H. W. 1957 Elements of Gas Dynamics. Wiley.Google Scholar
Longhorn, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Maths 5 (1), 6481.CrossRefGoogle Scholar
Luo, K., Luo, Y., Jin, T. & Fan, J. 2017 a Numerical analysis on shock-cylinder interaction using immersed boundary method. Sci. China 60 (9), 14231432.CrossRefGoogle Scholar
Luo, K., Luo, Y., Jin, T. & Fan, J. 2017 b Studies on shock interactions with moving cylinders using immersed boundary method. Phys. Rev. Fluids 2 (6), 064302.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mechs 32, 659708.CrossRefGoogle Scholar
Meliga, P., Pujals, G. & Serre, T. 2012 Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phy. Fluids 24 (6), 061701.CrossRefGoogle Scholar
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.CrossRefGoogle Scholar
Miles, J. W. 1951 On virtual mass and transient motion in subsonic compressible flow. Q. J. Mech. Appl. Maths 4 (4), 388400.CrossRefGoogle Scholar
Ofengeim, D. K. & Drikakis, D. 1997 Simulation of blast wave propagation over a cylinder. Shock Waves 7 (5), 305317.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2008 On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. Lond. A 366 (1873), 21612175.CrossRefGoogle ScholarPubMed
Parmar, M., Haselbacher, A. & Balachandar, S. 2009 Modeling of the unsteady force for shock–particle interaction. Shock Waves 19 (4), 317329.CrossRefGoogle Scholar
Roache, P. J. 1994 Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Engng 116, 3.CrossRefGoogle Scholar
Rodi, W. 1997 Comparison of LES and RANS calculations of the flow around bluff bodies. J. Wind Engng Ind. Aerodyn. 69-71, 5575.CrossRefGoogle Scholar
Rodriguez, O. 1984 The circular cylinder in subsonic and transonic flow. AIAA J. 22 (12), 17131718.CrossRefGoogle Scholar
Rosetti, G. F., Vaz, G. & Fujarra, A. L. C. 2012 URANS calculations for smooth circular cylinder flow in a wide range of Reynolds numbers: solution verification and validation. Trans. ASME J. Fluids Engng. 134 (12), 121103.CrossRefGoogle Scholar
Roy, C. J. 2010 Review of discretization error estimators in scientific computing. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA.CrossRefGoogle Scholar
Shaw, R. P. 1975 Transient scattering by a circular cylinder. J. Sound Vib. 42 (3), 295304.CrossRefGoogle Scholar
Stringer, R. M., Zang, J. & Hillis, A. J. 2014 Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Engng 87, 19.CrossRefGoogle Scholar
Sun, M., Saito, T., Takayama, K. & Tanno, H. 2005 Unsteady drag on a sphere by shock wave loading. Shock Waves 14 (1–2), 39.CrossRefGoogle Scholar
Takayama, K. & Itoh, K. 1985 Unsteady drag over cylinders and aerofoils in transonic shock tube flows. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes, pp. 439–485. Stanford University Press.Google Scholar
Takayama, K. & Sasaki, M. 1983 Effects of radius of curvature and initial angle on the shock transition over concave or convex walls. Reports of the Institute High Speed Mechanics, Tohoku University 46, 130.Google Scholar
Tanno, H., Itoh, K., Saito, T., Abe, A. & Takayama, K. 2003 Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13 (3), 191200.CrossRefGoogle Scholar
The Steel Construction Institute. 2018 FABIG TN 14 - Design of Low to Medium Rise Buildings against External Explosions. Available at: www.fabig.com.Google Scholar
Wakaba, L. & Balachandar, S. 2007 On the added mass force at finite Reynolds and acceleration numbers. Theor. Comput. Fluid Dyn. 21 (2), 147153.CrossRefGoogle Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Xia, Z., Zuoli, X., Yipeng, S. & Shiyi, C. 2016 Mach number effect of compressible flow around a circular cylinder. AIAA J. 54 (6), 20042009.CrossRefGoogle Scholar
Xu, C., Chen, L. & Lu, X. 2009 Effect of Mach number on transonic flow past a circular cylinder. Chinese Sci. Bull. 54 (11), 18861893.Google Scholar
Zółtak, J. & Drikakis, D. 1998 Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder. Comput. Meth. Appl. Mech. Engng 162 (1–4), 165185.CrossRefGoogle Scholar