Published online by Cambridge University Press: 19 July 2018
The unstable evolution of an elongated elliptically shaped inhomogeneity that is embedded in ambient air and aligned both normal and at an angle to an incident plane blast wave of impact Mach number 2.15 is investigated both experimentally and numerically. The elliptic inhomogeneities and the blast waves are generated using gas heating and exploding wire technique and their interaction is captured optically using shadowgraph method. While two symmetric counter-rotating vortices due to Richtmyer–Meshkov instability are observed for the straight interaction, the formation of a train of vortices similar to Kelvin–Helmholtz instability, introducing asymmetry into the flow field, are observed for an inclined interaction. During the early phase of the interaction process in the straight case, the growth of the counter-rotating vortices (based on the sequence of images obtained from the high-speed camera) and circulation (calculated with the aid of numerical data) are found to be linear in both space and time. Moreover, the normalized circulation is independent of the inhomogeneity density and the ellipse thickness, enabling the formulation of a unique linear fit equation. Conversely, the circulation for an inclined case follows a quadratic function, with each vortex in the train estimated to move with a different velocity directly related to its size at that instant. Two factors influencing the quadratic nature are identified: the reduction in strength of the transmitted shock thereby generating vortices with reduced vorticity, along with the gradual loss of vorticity of the earlier-generated vortices.