Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T20:21:15.359Z Has data issue: false hasContentIssue false

Oscillatory motion in Bénard cell due to the Soret effect

Published online by Cambridge University Press:  29 March 2006

J. K. Platten
Affiliation:
Faculty of Sciences, University of Mons, Belgium
G. Chavepeyer
Affiliation:
Faculty of Sciences, University of Mons, Belgium

Abstract

The period of oscillations for the Bénard problem in a two-component system taking into account thermal diffusion is given. Schmidt-Milverton plots are presented for water-methanol and water-isopropanol systems. Anomalous heating curves are observed. Thermocouple responses are given for some heating powers and show oscillations in the temperature field. A qualitative agreement exists with the predicted values of the period given by the theory.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, P. G. & Gill, A. E. 1969 On thermohaline convection with linear gradients J. Fluid Mech. 37, 289.Google Scholar
Caldwell, D. R. 1970 Non-linear effects in a Rayleigh-Bénard experiment J. Fluid Mech. 42, 161.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon.
De Groot, S. R. & Mazur, P. 1962 Non Equilibrium Thermodynamics. Amsterdam: North-Holland.
Hurle, D. T. J. & Jakeman, E. 1969 Significance of the Soret effect in the Rayleigh-Jeffreys' problem Phys. Fluids, 12, 2704.Google Scholar
Hurle, D. T. J. & Jakeman, E. 1971 Soret-driven thermosolutal convection J. Fluid Mech. 47, 667.Google Scholar
Legros, J. C. 1971 Contribution è l'étude de la thermodiffusion et è la stabilité hydrodynamique des systèmes binaires. Ph.D. thesis, Faculty of Sciences, University of Brussels.
Legros, J. C., Platten, J. K. & Poty, P. 1972 Stability of a two-component liquid layer heated from below Phys. Fluids, 15, 1383.Google Scholar
Legros, J. C., Rasse, D. & Thomaes, G. 1970 Convection and thermal diffusion in a solution heated from below Chem. Phys. Lett. 4, 632.Google Scholar
Legros, J. C., Van Hook, W. A. & Thomaes, G. 1968a Convection and thermal diffusion in a solution heated from below Chem. Phys. Lett. 1, 696.Google Scholar
Legros, J. C., Van Hook, W. A. & Thomaes, G. 1968b Convection and thermal diffusion in a solution heated from below. II Chem. Phys. Lett. 2, 249.Google Scholar
Nield, D. A. 1967 On thermohaline convection with linear gradients J. Fluid Mech. 29, 545.Google Scholar
Platten, J. K. 1971 Le problème de Bénard dans les mélanges: cas de surfaces libres. Bull. Acad. Roy. Belg. Cl. Sci. 57, 669.Google Scholar
Platten, J. K. & Chavepeyer, G. 1972a Soret driven instability Phys. Fluids, 15, 1555.Google Scholar
Platten, J. K. & Chavepeyer, G. 1972b Oscillations in a water-ethanol liquid layer heated from below. Phys. Lett. A 40, 287.Google Scholar
Sani, R. L. 1965 On finite amplitude roll cell disturbances in a fluid layer subjected to heat and mass transfer A.I.Ch.E. J. 11, 971.Google Scholar
Schechter, R. S., Prigogine, I. & Hamm, J. 1972 Thermal diffusion and convective instability. Phys. Fluids, 379.Google Scholar
Schmidt, R. J. & Milverton, S. W. 1935 On the instability of a fluid when heated from below. Proc. Roy. Soc. A 152, 586.Google Scholar
Shirtcliffe, T. G. L. 1969 An experimental investigation of thermosolutal convection at marginal stability J. Fluid Mech. 35, 677.Google Scholar
Veronis, G. 1968 Effect of a stabilizing gradient of solute on thermal convection J. Fluid Mech. 34, 315.Google Scholar