Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T05:34:13.506Z Has data issue: false hasContentIssue false

Orientation and rotation of inertial disk particles in wall turbulence

Published online by Cambridge University Press:  09 February 2015

Niranjan Reddy Challabotla
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Lihao Zhao*
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Helge I. Andersson
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
*
Email address for correspondence: [email protected]

Abstract

The translational and rotational dynamics of oblate spheroidal particles suspended in a directly simulated turbulent channel flow have been examined. Inertial disk-like particles exhibited a significant preferential orientation in the plane of the mean shear. The rotational inertia about the symmetry axis of the disk-like particles hampered the spin-up of the flattest particles to match the mean flow vorticity. The influence of the particle shape on the orientation and rotation diminished as the translational inertia increased from Stokes number 1 to 30. An isotropization of both orientation and rotation could be observed in the core region of the channel. The translational motion of the oblate spheroids had a weak dependence on the aspect ratio. We therefore concluded that inertial particles sample nearly the same flow field irrespective of shape. Nevertheless, the orientation and rotation of disk-like particles turned out to be qualitatively different from the dynamics of fibre-like particles.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, H. I. & Soldati, A. 2013 Anisotropic particles in turbulence: status and outlook. Acta Mechanica 224, 22192223.CrossRefGoogle Scholar
Brenner, H. 1964 The Stokes resistance of an arbitrary particle – IV: arbitrary fields of flow. Chem. Engng Sci. 19, 703727.Google Scholar
Challabotla, N. R., Nilsen, C. & Andersson, H. I. 2015 On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A 379, 157162.Google Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.CrossRefGoogle ScholarPubMed
Fan, F. G. & Ahmadi, G. 1995 A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J. Aero. Sci. 26, 813840.CrossRefGoogle Scholar
Gallily, I. & Cohen, A.-H. 1979 On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338356.CrossRefGoogle Scholar
Gauthier, G., Gondret, P. & Rabaud, M. 1998 Motions of anisotropic particles: application to visualization of three-dimensional flows. Phys. Fluids 10, 21472154.CrossRefGoogle Scholar
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501.CrossRefGoogle ScholarPubMed
Harper, E. Y. & Chang, I.-D. 1968 Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33, 209225.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Kleinstreuer, C. & Feng, Y. 2013 Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics – a review. J. Biomech. Engng 135, 021008.CrossRefGoogle ScholarPubMed
Klett, J. D. 1995 Orientation model for particles in turbulence. J. Atmos. Sci. 52, 22762285.2.0.CO;2>CrossRefGoogle Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.CrossRefGoogle Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323.Google Scholar
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.Google Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mechanica 224, 23112329.CrossRefGoogle Scholar
Marcus, G. G., Parsa, S., Kramel, S., Ni, R. & Voth, G. A. 2014 Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16, 102001.Google Scholar
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 a Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.CrossRefGoogle Scholar
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B.J. 2008 b On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34, 678683.CrossRefGoogle Scholar
Njobuenwu, D. O. & Fairweather, M. 2014 Effect of shape on inertial particle dynamics in a channel flow. Flow Turbul. Combust. 92, 83101.Google Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.Google Scholar
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aero. Sci. 24, 6587.Google Scholar
Siewert, C., Kunnen, R. P. J., Meinke, M. & Schröder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.Google Scholar
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F. G. & McLaughlin, J. B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27, 9711009.Google Scholar
Zhao, L., Marchioli, C. & Andersson, H. I. 2014 Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302.CrossRefGoogle Scholar