Published online by Cambridge University Press: 26 April 2006
In steady, two-dimensional, inertia-dominated flows it is well known that the vorticity is constant along the streamlines, which, in a bounded domain, are necessarily closed. For inviscid flows, the variation of vorticity across the streamlines is arbitrary, while for forced, weakly dissipitative flows, it is determined by the balance between viscous diffusion and the forcing. This paper discusses the linear stability of flows of this type to two-dimensional disturbances. Arnol'd's stability theorems are discussed. An alternative functional to Arnol'd's is found, which gives the same stability criteria and which permits a representation of the problem in terms of a Schrödinger equation. Conditions for stability are derived from this functional. In particular it is shown that total flow reversals are potentially unstable. The results are illustrated with respect to the geometrically simple case when the streamlines are circular and the forcing is due to a rotating magnetic field, for which case the stability regions are calculated as a function of two parameters. It is shown that the entire theory, including Arnol'd's theorems, applies also to poloidal axisymmetric flows.