Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T06:00:26.388Z Has data issue: false hasContentIssue false

On the instability of a free viscous rim

Published online by Cambridge University Press:  27 July 2010

ILIA V. ROISMAN*
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstr. 30, 64287, Darmstadt, Germany
*
Email address for correspondence: roisman@sla.tu-darmstadt.de

Abstract

This paper is devoted to the theoretical description of the dynamics of a rim formed by capillary forces at the edge of a free, thin liquid sheet. The rim dynamics are described using a quasi-one-dimensional approach accounting for the inertia of the liquid in the rim and for the liquid flow entering the rim from the sheet, surface tension and viscous stresses. The governing equations are derived from the mass, momentum and moment-of-momentum-balance equations of the rim. The theory provides a basis from which to analyse the linear stability of a straight line rim bounding a planar liquid sheet. The combined effect of the axisymmetric disturbances of the radius of the rim cross-section as well as of the transverse disturbances of the rim centreline is considered. The effect of the viscosity, relative film thickness and rim deceleration are investigated. The predicted wavelength of the most unstable mode is always very similar to the Rayleigh wavelength of the instability of an infinite cylindrical jet. This prediction is confirmed by various experimental data found in the literature. The maximum rate of growth of rim disturbances depends on all the parameters of the problem; however, the most pronounced effect can be attributed to the rim deceleration. This conclusion is confirmed by nonlinear simulations of rim deformation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collision of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
Bagué, A., Zaleski, S. & Josserand, C. 2007 Droplet formation at the edge of a liquid sheet. In Proceedings of the Sixth International Conference on Multiphase Flow (ICMF 2007) (ed. Sommerfeld, M. & Tropea, C.), Leipzig, Germany. ICMF.Google Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.CrossRefGoogle Scholar
Boussinesq, J. 1869 a Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire. C. R. Acad. Sci. Paris 69, 4548.Google Scholar
Boussinesq, J. 1869 b Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire (suite). C. R. Acad. Sci. Paris 69, 128131.Google Scholar
Brenn, G., Valkovska, D. & Danov, K. D. 2001 The formation of satellite droplets by unstable binary drop collisions. Phys. Fluids 13, 2463.CrossRefGoogle Scholar
Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number 0.0304. . . Phys. Fluids 8, 28272836.CrossRefGoogle Scholar
Brochard-Wyart, F. & De Gennes, P.-G. 1997 Shocks in an inertial dewetting process. C. R. Acad. Sci. Paris IIb 324, 257260.Google Scholar
Brochard-Wyart, F., Di Meglio, J. M. & Quéré, D. 1987 Dewetting: growth of dry regions from a film covering a flat solid or a fiber. C. R. Acad. Sci. Paris II 304, 553558.Google Scholar
Bush, J. W. M. & Hasha, A. E. 2004 On the collision of laminar jets: fluid chains and fishbones. J. Fluid Mech. 511, 285310.CrossRefGoogle Scholar
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.CrossRefGoogle Scholar
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.CrossRefGoogle Scholar
Clark, C. J. & Dombrowski, N. 1972 On the formation of drops from the rims of fan spray sheets. J. Aerosol. Sci. 3 (3), 173183.CrossRefGoogle Scholar
Cossali, G. E., Marengo, M., Coghe, A. & Zhdanov, S. 2004 The role of time in single drop splash on thin film. Exp. Fluids 36, 888900.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Debrégeas, G., Martin, P. & Brochard-Wyart, F. 1995 Viscous bursting of suspended films. Phys. Rev. Lett. 75, 38863889.CrossRefGoogle ScholarPubMed
Deegan, R. D., Brunet, P. & Eggers, J. 2008 Rayleigh–Plateau instability causes the crown splash. arXiv:0806.3050.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Entov, V. M. 1982 On the dynamics of films of viscous and elastoviscous liquids. Arch. Mech. Stosow 34 (4), 395407.Google Scholar
Entov, V. M., Rozhkov, A. N., Feizkhanov, U. F. & Yarin, A. L. 1986 Dynamics of liquid films: plane films with free rims. J. Appl. Mech. Tech. Phys. 27 (1), 4147.CrossRefGoogle Scholar
Entov, V. M. & Yarin, A. L. 1984 The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91111.CrossRefGoogle Scholar
Frankel, I. & Weihs, D. 1985 Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid. Mech. 155, 289307.CrossRefGoogle Scholar
Fullana, J. M. & Zaleski, S. 1999 Stability of a growing end rim in a liquid sheet of uniform thickness. Phys. Fluids 11 (5), 952954.CrossRefGoogle Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G. M. 1992 Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow 18, 635.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G. M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiph. Flow 21, 545.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 1650.CrossRefGoogle Scholar
Khakhar, D. V. & Ottino, J. M. 1987 Breakup of liquid threads in linear flows. Intl J. Multiph. Flow 13, 7186.CrossRefGoogle Scholar
Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.CrossRefGoogle ScholarPubMed
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 429.Google Scholar
Roisman, I. V. 2004 Dynamics of inertia dominated binary drop collisions. Phys. Fluids 16, 34383449.CrossRefGoogle Scholar
Roisman, I. V., Gambaryan-Roisman, T., Kyriopoulos, O., Stephan, P. & Tropea, C. 2007 Breakup and atomization of a stretching crown. Phys. Rev. E 76, 026302.CrossRefGoogle ScholarPubMed
Roisman, I. V., Horvat, K. & Tropea, C. 2006 Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18, 102104.CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 14111430.CrossRefGoogle Scholar
Roisman, I. V. & Tropea, C. 2002 Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373397.CrossRefGoogle Scholar
Roth, C. B., Deh, B., Nickel, B. G. & Dutcher, J. R. 2005 Evidence of convective constraint release during hole growth in freely standing polystyrene films at low temperatures. Phys. Rev. E 72, 021802.CrossRefGoogle ScholarPubMed
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2002 Impact of water drops on small targets. Phys. Fluids 14, 34853501.CrossRefGoogle Scholar
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.CrossRefGoogle Scholar
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid. Part 1. Water bells. Proc. R. Soc. Lond. A 253 (1274), 289295.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. Part 2. Waves on fluid sheets. Proc. R. Soc. Lond. A 263, 296312.Google Scholar
Taylor, G. I. 1959 c The dynamics of thin sheets of fluid. Part 3. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 289295.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Tomotika, S. 1935 On the stability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Vander Wal, R. L., Berger, G. M. & Mozes, S. D. 2005 Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 40 (1), 3352.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419–46.CrossRefGoogle Scholar
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 2, 136154.CrossRefGoogle Scholar
Yarin, A. L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman & Wiley.Google Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar