Published online by Cambridge University Press: 27 July 2010
This paper is devoted to the theoretical description of the dynamics of a rim formed by capillary forces at the edge of a free, thin liquid sheet. The rim dynamics are described using a quasi-one-dimensional approach accounting for the inertia of the liquid in the rim and for the liquid flow entering the rim from the sheet, surface tension and viscous stresses. The governing equations are derived from the mass, momentum and moment-of-momentum-balance equations of the rim. The theory provides a basis from which to analyse the linear stability of a straight line rim bounding a planar liquid sheet. The combined effect of the axisymmetric disturbances of the radius of the rim cross-section as well as of the transverse disturbances of the rim centreline is considered. The effect of the viscosity, relative film thickness and rim deceleration are investigated. The predicted wavelength of the most unstable mode is always very similar to the Rayleigh wavelength of the instability of an infinite cylindrical jet. This prediction is confirmed by various experimental data found in the literature. The maximum rate of growth of rim disturbances depends on all the parameters of the problem; however, the most pronounced effect can be attributed to the rim deceleration. This conclusion is confirmed by nonlinear simulations of rim deformation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.