Article contents
On the collapse of an empty cavity in water
Published online by Cambridge University Press: 28 March 2006
Abstract
This paper is concerned with the spherically symmetric collapse of an empty cavity in water. The effects of viscosity and surface tension are neglected, but the compressibility of the water is allowed for and a suitable equation of state for the water assumed. The object of this is to clarify the effect of compressibility on the flow by considering it in isolation and thus to describe the formation of a pressure pulse by the collapse and its subsequent propagation.
The exact flow equations are integrated numerically and it is found that very high flow speeds develop in the neighbourhood of the collapse point. The radius of the cavity is found to be proportional to (-t)n for small t, where t = 0 is the instant of collapse, and n is some positive number less than unity.
The flow in the neighbourhood of the collapse point can be described by means of a similarity solution, and the value of n is determined by regularity properties of the similarity solution (the value of n depends on the equation of state assumed for the water). The similarity theory, which is valid only at very high pressures and velocities, can be continued beyond the instant of collapse to describe the formation of a shock wave after the collapse is completed, and the initial propagation of this shock.
- Type
- Research Article
- Information
- Copyright
- © 1960 Cambridge University Press
References
- 63
- Cited by