Published online by Cambridge University Press: 26 April 2006
The linear, inviscid reflection of a straight-crested surface wave from a vertical wall is determined on the hypothesis that the contact angle of the meniscus vanishes. The reflection coefficient is a function of the parameter γ ≡ k0l, where k0 is the wavenumber of the incident wave and l is the capillary length, and is approximated by R = exp (−4iγ2) for a gravity–capillary wave for which γ [Lt ] 1. The solution of this reflection problem is used to obtain matched-asymptotic approximations for standing waves in channels and circular cylinders. The meniscus-induced, fractional reduction of the frequency of the dominant mode in a deep circular cylinder is 0.77 γ2 (which exceeds the increase of ½γ2 associated with the capillary energy of the free surface). This decrement is within 2 mHz of the value inferred from the measurements of Cocciaro et al. (1991) after allowing for the reduction in frequency induced by the viscous boundary layers at the walls, but there are residual uncertainties (in this comparison) associated with the wetting process at the moving contact line and possible surface contamination.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.