Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T05:33:50.387Z Has data issue: false hasContentIssue false

On steady and pulsed low-blowing-ratio transverse jets

Published online by Cambridge University Press:  02 January 2013

G. Bidan*
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
D. E. Nikitopoulos*
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The present experimental and numerical study focuses on the vortical structures encountered in steady and pulsed low-blowing-ratio transverse jets ($0. 150\leq \mathit{BR}\leq 4. 2$), a configuration hardly discussed in the literature. Under unforced conditions at low blowing ratio, a stable leading-edge shear-layer rollup is identified inside the jet pipe. As the blowing ratio is increased, the destabilization and evolution of this structure sheds light on the formation mechanisms of the well-known transverse jet vortical system. A discussion on the nature of the counter-rotating vortex pair in low-blowing-ratio transverse jets is also provided. Under forced conditions, the experimental observations support and extend numerical results of previous fully modulated jet studies. Large-eddy simulation results provide scaling parameters for the classification of starting vortices for partly modulated jets, as well as information on their three-dimensional dynamics. The counter-rotating vortex pair initiation is observed and detailed in both Mie scattering visualizations and simulations. The observations support a mechanism based on stretching of the starting vortical structures because of inviscid induction and partial leapfrogging. Two modes of cross-flow ingestion inside the jet pipe are described as the pulsed jet cycles from high to low values of blowing ratio.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M. S. & Smith, C. R. 1987a A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Acarlar, M. S. & Smith, C. R. 1987b A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. J. Fluid Mech. 175, 4385.Google Scholar
Andreopoulos, J. & Rodi, W. 1984 Experimental investigation of jets in a crossflow. J. Fluid Mech. 138, 93127.Google Scholar
Bidan, G. & Nikitopoulos, D. E. 2011 Fundamental study of modulated transverse jets from a film-cooling perspective. AIAA J. 49 (7), 14981510.CrossRefGoogle Scholar
Blanchard, J. N., Brunet, Y. & Merlen, A. 1999 Influence of a counter rotating vortex pair on the stability of a jet in a cross flow: an experimental study by flow visualizations. Exp. Fluids 26 (1), 6374.Google Scholar
Camussi, R., Guj, G. & Stella, A. 2002 Experimental study of a jet in a crossflow at very low Reynolds number. J. Fluid Mech. 454, 113144.Google Scholar
Chang, Y. K. & Vakili, A. D. 1995 Dynamics of vortex rings in crossflow. Phys. Fluids 7 (7), 15831597.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Lim, T. T. 2009 Motion of a vortex ring in a simple shear flow. Phys. Fluids 21 (8), 081701.CrossRefGoogle Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Coulthard, S. M., Volino, R. J. & Flack, K. A. 2007 Effect of jet pulsing on film cooling – Part I: Effectiveness and flow field temperature results. J. Turbomach. 129 (2), 232246.Google Scholar
Ekkad, S., Ou, S. & Rivir, R. B. 2006 Effect of jet pulsation and duty cycle on film cooling from a single jet on a leading edge model. J. Turbomach. 128 (3), 564571.CrossRefGoogle Scholar
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39 (3), 417423.Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Gogineni, S., Goss, L. & Roquemore, M. 1998 Manipulation of a jet in a cross flow. Exp. Therm. Fluid Sci. 16 (3), 209219.Google Scholar
Gopalan, S., Abraham, B. M. & Katz, J. 2004 The structure of a jet in cross flow at low velocity ratios. Phys. Fluids 16 (6), 20672087.Google Scholar
Guo, X., Schroder, W. & Meinke, M. 2006 Large-eddy simulations of film cooling flows. Comput. Fluids 35 (6), 587606.CrossRefGoogle Scholar
Hagen, J. P. & Kurosaka, M. 1993 Corewise cross-flow transport in hairpin vortices – the “tornado effect”. Phys. Fluids A: Fluid Dyn. 5, 3167.Google Scholar
Harrington, M. K., McWaters, M. A., Bogard, D. G., Lemmon, C. A. & Thole, K. A. 2001 Full-coverage film cooling with short normal injection holes. J. Turbomach. 123 (4), 798805.Google Scholar
Haven, B. A. & Kurosaka, M. 1997 Kidney and anti-kidney vortices in crossflow jets. J. Fluid Mech. 352, 2764.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Johari, H. 2006 Scaling of fully pulsed jest in crossflow. AIAA J. 44 (11), 27192725.Google Scholar
Johari, H., Pacheco-Tougas, M. & Hermanson, J. C. 1999 Penetration and mixing of fully modulated turbulent jets in crossflow. AIAA J. 37 (7), 842850.Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.Google Scholar
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7 (1), 153158.CrossRefGoogle Scholar
Krothapalli, A. & Lourenco, L. 1990 Separated flow upstream of a jet in crossflow. AIAA J. 28 (3), 414420.Google Scholar
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex rings formed in uniform background co-flow. J. Fluid Mech. 556, 147166.Google Scholar
Ligrani, P. M., Gong, R., Cuthrell, J. M. & Lee, J. S. 1996 Bulk flow pulsations and film cooling – I. Injectant behaviour. Intl J. Heat Mass Transfer 39 (11), 22712282.Google Scholar
Lim, T. T., Lua, K. B. & Thet, K. 2008 Does Kutta lift exist on a vortex ring in a uniform cross flow? Phys. Fluids 20 (5), 051701.CrossRefGoogle Scholar
Lim, T. T., New, T. H. & Luo, S. C. 2001 On the development of large-scale structures of a jet normal to a cross flow. Phys. Fluids 13, 770.Google Scholar
Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Fluid Vortices (ed. Green, S. I.). Kluwer.Google Scholar
Marzouk, Y. M. & Ghoniem, A. F. 2007 Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575, 267305.CrossRefGoogle Scholar
M’Closkey, R. T., King, J. M., Cortelezzi, L. & Karagozian, A. R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.Google Scholar
Megerian, S., Davitian, J., Alves, L. S. de B. & Karagozian, A. R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.Google Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2003 Elliptic jets in cross-flow. J. Fluid Mech. 494, 119140.Google Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2006 Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40, 859875.Google Scholar
Nikitopoulos, D. E., Acharya, S., Oertling, J. & Muldoon, F. H. 2006 On active control of film-cooling flows. In ASME Conference Proceedings, vol. 2006, pp. 61–69. ASME (4238X), http://link.aip.org/link/abstract/ASMECP/v2006/i4238X/p61/s1.Google Scholar
Nikitopoulos, D. E. & Liu, J. T. C. 1987 Nonlinear binary-mode interactions in a developing mixing layer. J. Fluid Mech. 179 (1), 345370.Google Scholar
Nikitopoulos, D. E. & Liu, J. T. C. 2001 Nonlinear three-mode interactions in a developing mixing layer. Phys. Fluids 13, 966.CrossRefGoogle Scholar
Perry, A. E. & Lim, T. T. 1978 Coherent structures in coflowing jets and wakes. J. Fluid Mech. 88 (3), 451463.Google Scholar
Rivero, A., Ferre, J. A. & Giralt, F. 2001 Organized motions in a jet in crossflow. J. Fluid Mech. 444, 117149.Google Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.Google Scholar
Sau, R. & Mahesh, K. 2008 Dynamics and mixing of vortex rings in crossflow. J. Fluid Mech. 604, 389409.Google Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Sykes, R. I., Lewellen, W. S. & Parker, S. F. 1986 On the vorticity dynamics of a turbulent jet in a crossflow. J. Fluid Mech. 168, 393413.Google Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.Google Scholar
Womack, K. M., Volino, R. J. & Schultz, M. P. 2008 Combined effects of wakes and jet pulsing on film cooling. J. Turbomach. 130 (4), 041010.Google Scholar
Yuan, L. L., Street, R. L. & Ferziger, J. H. 1999 Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71104.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar