Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T09:07:07.911Z Has data issue: false hasContentIssue false

On low-frequency variability of the midlatitude ocean gyres

Published online by Cambridge University Press:  15 April 2016

I. V. Shevchenko*
Affiliation:
Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
P. S. Berloff
Affiliation:
Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
D. Guerrero-López
Affiliation:
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Camí de Vera, s/n 46022, València, Spain
J. E. Roman
Affiliation:
Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Camí de Vera, s/n 46022, València, Spain
*
Email address for correspondence: [email protected]

Abstract

This paper studies the large-scale low-frequency variability of the wind-driven midlatitude ocean gyres and their western boundary currents, such as the Gulf Stream or Kuroshio, simulated with the eddy-resolving quasi-geostrophic model. We applied empirical orthogonal functions analysis to turbulent flow solutions and statistically extracted robust and significant large-scale decadal variability modes concentrated around the eastward jet extension of the western boundary currents. In order to interpret these statistical modes dynamically, we linearized the governing quasi-geostrophic equations around the time-mean circulation and solved for the corresponding full set of linear eigenmodes with their eigenfrequencies. We then projected the extracted decadal variability on the eigenmodes and found that this variability is a multimodal coherent pattern phenomenon rather than a single mode or a combination of several modes as in the flow regimes preceding developed turbulence.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berloff, P., Hogg, A. & Dewar, W. 2007a The turbulent oscillator: a mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr. 37, 23632386.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2013a On spectral analysis of mesoscale eddies. Part I: linear analysis. J. Phys. Oceanogr. 43, 25052527.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2013b On spectral analysis of mesoscale eddies. Part II: nonlinear analysis. J. Phys. Oceanogr. 43, 25282544.CrossRefGoogle Scholar
Berloff, P., Karabasov, S., Farrar, T. & Kamenkovich, I. 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.CrossRefGoogle Scholar
Berloff, P., Kravtsov, S., Dewar, W. & McWilliams, J. 2007b Ocean eddy dynamics in a coupled ocean-atmosphere model. J. Phys. Oceanogr. 37, 11031121.CrossRefGoogle Scholar
Berloff, P. S. 2005 On rectification of randomly forced flows. J. Mar. Res. 3, 497527.CrossRefGoogle Scholar
Berloff, P. S. & McWilliams, J. C. 1999 Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr. 29, 19251949.2.0.CO;2>CrossRefGoogle Scholar
Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A. et al. 1997 ScaLAPACK Users’ Guide. SIAM.CrossRefGoogle Scholar
Chang, K., Ide, K., Ghil, M. & Lai, C.-C. 2001 Transition to aperiodic variability in a wind-driven double-gyre circulation model. J. Phys. Oceanogr. 31, 12601286.2.0.CO;2>CrossRefGoogle Scholar
Davidson, P. A. 2014 The dynamics and scaling laws of planetary dynamos driven by inertial waves. Geophys. J. Intl 198, 18321847.CrossRefGoogle Scholar
Deser, C. & Blackmon, M. 1993 Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Clim. 6, 17431753.2.0.CO;2>CrossRefGoogle Scholar
Dijkstra, H. 2016 A normal mode perspective of intrinsic ocean-climate variability. Annu. Rev. Fluid Mech. 48, 341363.CrossRefGoogle Scholar
Feliks, Y., Ghil, M. & Robertson, A. 2011 The atmospheric circulation over the north atlantic as induced by the SST field. J. Clim. 24, 522542.CrossRefGoogle Scholar
Hannachi, A., Jolliffe, I. & Stephenson, D. 2007 Empirical orthogonal functions and related techniques in atmospheric science: a review. Intl J. Climatol. 27, 11191152.CrossRefGoogle Scholar
Hogg, A., Killworth, P., Blundell, J. & Dewar, W. 2005 Mechanisms of decadal variability of the wind-driven ocean circulation. J. Phys. Oceanogr. 35, 512531.CrossRefGoogle Scholar
Karabasov, S. A., Berloff, P. S. & Goloviznin, V. M. 2009 CABARET in the ocean gyres. Ocean Model. 2–3, 155168.CrossRefGoogle Scholar
Kondrashov, D. & Berloff, P. 2015 Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett. 42, 15431553.CrossRefGoogle Scholar
Kravtsov, S., Berloff, P., Dewar, W., Ghil, M. & McWilliams, J. 2010 Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model. J. Clim. 19, 63916408.CrossRefGoogle Scholar
Kushnir, Y. 1994 Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J. Clim. 7, 141157.2.0.CO;2>CrossRefGoogle Scholar
Kwon, Y.-O., Alexander, M., Bond, N., Frankignoul, C., Nakamura, H., Qiu, B. & Thompson, L. 2010 Role of the Gulf stream and Kurosio–Oyashio systems in large-scale atmosphere-ocean interaction: a review. J. Clim. 23, 32493281.CrossRefGoogle Scholar
McCalpin, J. D. & Haidvogel, D. B. 1996 Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr. 26, 739752.2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 5, 427441.CrossRefGoogle Scholar
Meacham, S. P. 2000 Low-frequency variability in the wind-driven circulation. J. Phys. Oceanogr. 30, 269293.2.0.CO;2>CrossRefGoogle Scholar
Nauw, J. J. & Dijkstra, H. A. 2001 The origin of low-frequency variability of double-gyre wind-driven flows. J. Mar. Res. 59, 567597.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Pierini, S., Dijkstra, H. & Mu, M. 2014 Intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension. Adv. Oceanogr. Limnol. 5, 79122.CrossRefGoogle Scholar
Preisendorfer, R. W. 1988 Principal Component Analysis in Meteorology and Oceanography. Elsevier.Google Scholar
Schmeits, M. J. & Dijkstra, H. A. 2002 Subannual variability of the ocean circulation in the Kuroshio region. J. Geophys. Res. 107, 28,1–12.CrossRefGoogle Scholar
Sérazin, G., Penduff, T., Grégorio, S., Barnier, B., Molines, J.-M. & Terray, L. 2015 Intrinsic variability of sea level from global 1/12° ocean simulations: spatiotemporal scales. J. Clim. 28, 42794292.CrossRefGoogle Scholar
Sheremet, V. A., Ierley, G. R. & Kamenkovich, V. M. 1997 Eigenanalysis of the two-dimensional wind-driven ocean circulation problem. J. Mar. Res. 55, 5792.CrossRefGoogle Scholar
Shevchenko, I. V. & Berloff, P. S. 2015 Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes. Ocean Model. 94, 114.CrossRefGoogle Scholar
Simonnet, E. 2010 Quantization of the low-frequency variability of the double-gyre circulation. J. Phys. Oceanogr. 35, 22682290.CrossRefGoogle Scholar
Simonnet, E. & Dijkstra, H. 2002 Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr. 32, 17471762.2.0.CO;2>CrossRefGoogle Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.CrossRefGoogle Scholar