Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T06:31:13.821Z Has data issue: false hasContentIssue false

On energy exchanges between eddies and the mean flow in quasigeostrophic turbulence

Published online by Cambridge University Press:  17 December 2019

William Barham
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Ian Grooms*
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: [email protected]

Abstract

We study the term in the eddy energy budget of continuously stratified quasigeostrophic turbulence that is responsible for energy extraction by eddies from the background mean flow. This term is a quadratic form, and we derive Euler–Lagrange equations describing its eigenfunctions and eigenvalues, the former being orthogonal in the energy inner product and the latter being real. The eigenvalues correspond to the instantaneous energy growth rate of the associated eigenfunction. We find analytical solutions in the Eady problem. We formulate a spectral method for computing eigenfunctions and eigenvalues, and compute solutions in Phillips-type and Charney-type problems. In all problems, instantaneous growth is possible at all horizontal scales in both inviscid problems and in problems with linear Ekman friction. We conjecture that transient growth at small scales is matched by linear transfer to decaying modes with the same horizontal structure, and we provide simulations supporting the plausibility of this hypothesis. In Charney-type problems, where the linear problem has exponentially growing modes at small scales, we expect net energy extraction from the mean flow to be unavoidable, with an associated nonlinear transfer of energy to dissipation.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barcilon, V. 1964 Role of the Ekman layers in the stability of the symmetric regime obtained in a rotating annulus. J. Atmos. Sci. 21 (3), 291299.2.0.CO;2>CrossRefGoogle Scholar
Barham, W., Bachman, S. & Grooms, I. 2018 Some effects of horizontal discretization on linear baroclinic and symmetric instabilities. Ocean Model. 125, 106116.CrossRefGoogle Scholar
Barham, W. & Grooms, I. 2019 Exact instantaneous optimals in the non-geostrophic Eady problem and the detrimental effects of discretization. Theor. Comput. Fluid Dyn. 33 (2), 125139.CrossRefGoogle Scholar
Böberg, L. & Brösa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43 (8–9), 697726.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Capet, X., Roullet, G., Klein, P. & Maze, G. 2016 Intensification of upper-ocean submesoscale turbulence through charney baroclinic instability. J. Phys. Oceanogr. 46 (11), 33653384.CrossRefGoogle Scholar
Charney, J. G. 1947 The dynamics of long waves in a baroclinic westerly current. J. Met. 4 (5), 136162.2.0.CO;2>CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chen, A., Barham, W. & Grooms, I. 2018 Comparing eddy-permitting ocean model parameterizations via Lagrangian particle statistics in a quasigeostrophic setting. J. Geophys. Res.-Oceans 123 (8), 56375651.CrossRefGoogle Scholar
DelSole, T. 2004 The necessity of instantaneous optimals in stationary turbulence. J. Atmos. Sci. 61 (9), 10861091.2.0.CO;2>CrossRefGoogle Scholar
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.CrossRefGoogle Scholar
Farrell, B. 1984 Modal and non-modal baroclinic waves. J. Atmos. Sci. 41 (4), 668673.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. 1985 Transient growth of damped baroclinic waves. J. Atmos. Sci. 42 (24), 27182727.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. 1989 Optimal excitation of baroclinic waves. J. Atmos. Sci. 46 (9), 11931206.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I. Autonomous operators. J. Atmos. Sci. 53 (14), 20252040.2.0.CO;2>CrossRefGoogle Scholar
Ferrari, R. & Wunsch, C. 2009 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253282.CrossRefGoogle Scholar
Fu, L.-L. & Flierl, G. R. 1980 Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans 4 (4), 219246.CrossRefGoogle Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.Google Scholar
Grooms, I. 2015 Submesoscale baroclinic instability in the Balance Equations. J. Fluid Mech. 762, 256272.CrossRefGoogle Scholar
Grooms, I. 2016 A Gaussian-product stochastic Gent–McWilliams parameterization. Ocean Model. 106, 2743.CrossRefGoogle Scholar
Grooms, I. & Kleiber, W. 2019 Diagnosing, modeling, and testing a multiplicative stochastic Gent–McWilliams parameterization. Ocean Model. 133, 110.CrossRefGoogle Scholar
Grooms, I. & Majda, A. J. 2014 Stochastic superparameterization in quasigeostrophic turbulence. J. Comput. Phys. 271, 7898.CrossRefGoogle Scholar
Haidvogel, D. B. & Held, I. M. 1980 Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci. 37 (12), 26442660.2.0.CO;2>CrossRefGoogle Scholar
Holopainen, E. O. 1961 On the effect of friction in baroclinic waves. Tellus 13, 363367.CrossRefGoogle Scholar
Jansen, M. F. & Held, I. M. 2014 Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 3648.CrossRefGoogle Scholar
Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.Google Scholar
Kalashnik, M. V. & Chkhetiani, O. 2018 An analytical approach to the determination of optimal perturbations in the Eady model. J. Atmos. Sci. 75, 27412761.CrossRefGoogle Scholar
Kitsios, V., Frederiksen, J. S. & Zidikheri, M. J. 2013 Scaling laws for parameterisations of subgrid eddy–eddy interactions in simulations of oceanic circulations. Ocean Model. 68, 88105.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 274286.CrossRefGoogle Scholar
Rivière, G., Hua, B. L. & Klein, P. 2001 Influence of the 𝛽-effect on non-modal baroclinic instability. Q. J. R. Meteorol. Soc. 127 (574), 13751388.CrossRefGoogle Scholar
Roullet, G., McWilliams, J. C., Capet, X. & Molemaker, M. J. 2012 Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Ocean. 42 (1), 1838.CrossRefGoogle Scholar
Salmon, R. 1978 Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn. 10 (1), 2552.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Scott, R. B. & Arbic, B. K. 2007 Spectral energy fluxes in geostrophic turbulence: implications for ocean energetics. J. Phys. Ocean. 37 (3), 673688.CrossRefGoogle Scholar
Smith, K. S. 2007 The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res. 65 (5), 655683.CrossRefGoogle Scholar
Smith, K. S. & Vallis, G. K. 2002 The scales and equilibration of midocean eddies: Forced–dissipative flow. J. Phys. Ocean. 32 (6), 16991720.2.0.CO;2>CrossRefGoogle Scholar
Tulloch, R., Marshall, J., Hill, C. & Smith, K. S. 2011 Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Ocean. 41 (6), 10571076.CrossRefGoogle Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Watwood, M. & Grooms, I.2019 QG-Galerkin. https://github.com/mwatwood-cu/QG-Galerkin.Google Scholar
Watwood, M., Grooms, I., Julien, K. A. & Smith, K. S. 2019 Energy-conserving Galerkin approximations for quasigeostrophic dynamics. J. Comput. Phys. 388, 2340.CrossRefGoogle Scholar
Williams, G. P. & Robinson, J. B. 1974 Generalized Eady waves with Ekman pumping. J. Atmos. Sci. 31 (7), 17681776.2.0.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Barham and Grooms supplementary material

Barham and Grooms supplementary material

Download Barham and Grooms supplementary material(File)
File 943 Bytes