Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T18:54:47.556Z Has data issue: false hasContentIssue false

On cell formation in vortex streets

Published online by Cambridge University Press:  26 April 2006

Bernd R. Noack
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, D-3400 Göttingen, Germany
Frank Ohle
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstr. 10, D-3400 Göttingen, Germany Present address: Beckman Institute, Center of Complex System Research, 405 North Mathews Avenue, Urbana, IL 61801, USA.
Helmut Eckelmann
Affiliation:
Institut für Angewandte Mechanik und Strömungsphysik der Universität, Bunsenstr. 10, D-3400 Göttingen, Germany

Abstract

A simple, phenomenological model is proposed for the formation of spanwise cells behind slender bodies of revolution in crosswise, uniform or non-uniform oncoming flow. The model yields estimates for the position of the cells, their frequencies, their amplitudes of oscillation along the span, and the local shedding angle. The qualitative features of the solutions of this theory agree well with experiments. A quantitative comparison with experiments for a slender cone is presented.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, E. 1964 Die Bestimmung der hydrodynamischen Grössen einer Kármánschen Wirbelstraße aus Hitzdrahtmessungen bei kleinen Reynoldsschen Zahlen. Z. Flugwiss. 12, 4159.Google Scholar
Detemple-Laake, E. & Eckelmann, H. 1989 Phenomenology of Kármán vortex streets in oscillatory flow. Expts Fluids 7, 217227.Google Scholar
Eisenlohr, H. & Eckelmann, H. 1989 Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds numbers.. Phys. Fluids A 1, 189192.Google Scholar
Gaster, M. 1969 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 38, 565576.Google Scholar
Gaster, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech. 46, 749756.Google Scholar
Gerich, D. 1979 Einfluß von Endscheiben und freien Enden auf den Nachlauf von angeströmten Zylindern. Diplomarbeit, Institut für Angwandte Mechanik und Strömungsphysik der Georg-August-Universität, Göttingen.
Gerich, D. & Eckelmann, H. 1982 Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109121.Google Scholar
Jordan, D. W. & Smith, P. 1988 Nonlinear Ordinary Differential Equations, chap. 4. Clarendon.
König, M. 1988 Diskontinuitäten im Nachlauf von Kreiszylindern bei kleinen Reynoldszahlen. Diplomarbeit, Institut für Angwandte Mechanik und Strömungsphysik der Georg-August-Universität, Göttingen.
König, M., Eisenlohr, H. & Eckelmann, H. 1990 The fine structure in the Strouhal–Reynolds number relationship of the laminar wake of a circular cylinder.. Phys. Fluids A 2, 16071614.Google Scholar
Noack, B. R. 1989 Untersuchung chaotischer Phänomene in der Nachlaufströmung eines Kreiszylinders. Diplomarbeit, Institut für Angwandte Mechanik und Strömungsphysik der Georg-August-Universität, Göttingen.
Ohle, F. 1989 Beschreibung transienter Zustände der Kármánschen Wirbelstraße und Anregung der Wirbelstraße durch Schall. Diplomarbeit, Institut für Angwandte Mechanik und Strömungsphysik der Georg-August-Universität, Göttingen.
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. Natl Advisory Comm. Aeronaut. TN 1191.Google Scholar
Skop, R. A. & Griffin, O. M. 1973 A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27, 225233.Google Scholar
Skop, R. A. & Griffin, O. M. 1975 On a theory for the vortex-excited oscillations of flexible cylindrical structures. J. Sound Vib. 27, 263274.Google Scholar
Strouhal, V. 1878 Über eine besondere Art der Tonerzeugung. Ann. Phys. Chem. (Neue Folge) 5, 215251.Google Scholar
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6, 547567.Google Scholar
Williamson, C. H. K. 1988 Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 27422744.Google Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.Google Scholar