Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T13:29:25.277Z Has data issue: false hasContentIssue false

Numerical study of the effect of surface wave on turbulence underneath. Part 2. Eulerian and Lagrangian properties of turbulence kinetic energy

Published online by Cambridge University Press:  11 March 2014

Xin Guo
Affiliation:
Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
Lian Shen*
Affiliation:
Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
*
Email address for correspondence: [email protected].

Abstract

The effect of the rapid distortion of a surface wave on the kinetic energy of turbulence underneath is studied based on the simulation data of Part 1 (Guo & Shen, J. Fluid Mech., vol. 733, 2013, pp. 558–587). In the Eulerian frame, Reynolds normal stresses, which contribute to turbulence kinetic energy, are found to vary with the wave phase. An analysis of their budgets shows that their variation is dominated not only by the normal production term representing the wave straining effect on wave–turbulence energy exchange, but also by pressure effects including the pressure–strain correlation and pressure transport terms. In the Lagrangian frame, the net energy transfer from the wave to turbulence is analysed. It is found to be mainly contributed by the mean Lagrangian effect and the correlation between the Lagrangian fluctuations of the wave and turbulence; the former plays a major role in the overall wave energy dissipation, while the latter is associated with the viscous effect of the wave surface and is appreciable in the near-surface region. Models for various terms in wave–turbulence energy flux are discussed. The decay time scale of swells in oceans estimated from our simulations compares well with the results in the literature.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609646.Google Scholar
Anis, A. & Moum, J. N. 1995 Surface wave–turbulence interactions: scaling $\epsilon (z )$ near the sea surface. J. Phys. Oceanogr. 25, 20252045.Google Scholar
Ardhuin, F., Chapron, B. & Collard, F. 2009 Observation of swell dissipation across oceans. Geophys. Res. Lett. 36 (6), 06607.Google Scholar
Ardhuin, F. & Jenkins, A. D. 2006 On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr. 36, 551557.Google Scholar
Belcher, S. E., Harris, J. A. & Street, R. L. 1994 Linear dynamics of wind waves in coupled turbulent air–water flow. Part 1. Theory. J. Fluid Mech. 271, 119151.Google Scholar
Brumley, B. H. & Jirka, G. H. 1987 Near-surface turbulence in a grid-stirred tank. J. Fluid Mech. 183, 235263.Google Scholar
Cavaleri, L., Alves, J.-H. G. M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H. C., Hwang, P., Janssen, P. A. E. M., Janssen, T., Lavrenov, I. V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W. E., Sheremet, A., McKee Smith, J., Tolman, H. L., van Vledder, G., Wolf, J. & Young, I. 2007 Wave modelling – The state of the art. Prog. Oceanogr. 75 (4), 603674.Google Scholar
Chen, J., Meneveau, C. & Katz, J. 2006 Scale interactions of turbulence subjected to a straining-relaxation-destraing cycle. J. Fluid Mech. 562, 123150.Google Scholar
Gence, J. N. & Mathieu, J. 1979 On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech. 93, 501513.Google Scholar
Guo, X. & Shen, L. 2009 On the generation and maintenance of waves and turbulence in simulations of free-surface turbulence. J. Comput. Phys. 228, 73137332.Google Scholar
Guo, X. & Shen, L. 2010 Interaction of a deformable free surface with statistically-steady homogeneous turbulence. J. Fluid Mech. 658, 3362.Google Scholar
Guo, X. & Shen, L. 2013 Numerical study of the effect of surface wave on turbulence underneath. Part 1. Mean flow and turbulence vorticity. J. Fluid Mech. 733, 558587.Google Scholar
Huang, C. J. & Qiao, F. 2010 Wave–turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res. 115, 112.Google Scholar
Hunt, J. C. R. & Graham, J. M. R. 1978 Free-stream turbulence near plane boundaries. J. Fluid Mech. 84, 209235.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jiang, J.-Y. & Street, R. L. 1991 Modulated flows beneath wind-ruffled, mechanically generated water waves. J. Geophys. Res. 96, 27112721.Google Scholar
Jiang, J.-Y., Street, R. L. & Klotz, S. P. 1990 A study of wave–turbulence interaction by use of a nonlinear water wave decomposition technique. J. Geophys. Res. 95, 1603716054.Google Scholar
Kantha, L. 2006 A note on the decay rate of swell. Ocean Model. 11, 167173.Google Scholar
Kantha, L., Lass, H. U. & Prandke, H. 2010 A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: observations in the Baltic Sea. Ocean Dyn. 60 (1), 171180.CrossRefGoogle Scholar
Kantha, L., Wittmann, P., Sclavo, M. & Carniel, S. 2009 A preliminary estimate of the Stokes dissipation of wave energy in the global ocean. Geophys. Res. Lett. 36, 02605.Google Scholar
Kaplunenko, D. D., Polyakova, A. M. & Marchenko, S. S. 2011 Typical fields of wind waves and swells in the Northern Pacific. Oceanology 51 (5), 736744.CrossRefGoogle Scholar
Kitaigorodskii, S. A., Donelan, M. A., Lumley, J. L. & Terray, E. A. 1983 Wave–turbulence interactions in the upper ocean. Part II. Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr. 13, 19881999.2.0.CO;2>CrossRefGoogle Scholar
Kitaigorodskii, S. A. & Lumley, J. L. 1983 Wave–turbulence interactions in the upper ocean. Part I. The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence. J. Phys. Oceanogr. 13, 19771987.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Petrol. Trans. A 245, 535581.Google Scholar
Lumley, J. L. & Terray, E. A. 1983 Kinematics of turbulence converted by a random wave field. J. Phys. Oceanogr. 13, 20002007.Google Scholar
Magnaudet, J. & Thais, L. 1995 Orbital ratational motion and turbulence below laboratory wind water waves. J. Geophys. Res. 100, 757771.Google Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.Google Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.Google Scholar
Ölmez, H. S. & Milgram, J. H. 1992 An experimental study of attenuation of short water waves by turbulence. J. Fluid Mech. 239, 133156.Google Scholar
Pan, Y. & Banerjee, S. 1995 A numerical study of free-surface turbulence in channel flow. Phys. Fluids 7, 16491664.Google Scholar
Perot, B. & Moin, P. 1995 Shear-free turbulent boundary layers. Part 1. Phyiscal insights into near-wall turbulence. J. Fluid Mech. 295, 199227.Google Scholar
Phillips, O. M. 1977 Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rascle, N., Ardhuin, F., Queffeulou, P. & Croizefillon, D. 2008 A global wave parameter database for geophysical applications. Part 1: wave–current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Model. 25 (3-4), 154171.Google Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1992 Wave–turbulence interaction in free-surface channel flows. Phys. Fluids A 4, 27272738.Google Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, G. S. 1999 The surface layer for free-surface turbulent flows. J. Fluid Mech. 386, 167212.Google Scholar
Stuart, J. T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24, 673687.Google Scholar
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42 (1), 1942.Google Scholar
Taylor, G. I. 1935 Turbulence in a contracting stream. Z. Angew. Math. Mech. 15, 9196.Google Scholar
Teixeira, M. A. C. & Belcher, S. E. 2000 Dissipation of shear-free turbulence near boundaries. J. Fluid Mech. 422, 167191.Google Scholar
Teixeira, M. A. C. & Belcher, S. E. 2002 On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229267.Google Scholar
Teixeira, M. A. C. & Belcher, S. E. 2010 On the structure of Langmuir turbulence. Ocean Model. 31, 105119.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT press.CrossRefGoogle Scholar
Thais, L. & Magnaudet, J. 1996 Turbulent structure beneath surface gravity waves sheared by the wind. J. Fluid Mech. 328, 313344.Google Scholar
Thorpe, S. A. 2004 Langmir circulation. Annu. Rev. Fluid Mech. 36, 5579.Google Scholar
Veron, F., Melville, W. K. & Lenain, L. 2009 Measurements of ocean surface turbulence and wave–turbulence interactions. J. Phys. Oceanogr. 39, 23102323.Google Scholar
Walker, D. T., Leighton, R. I. & Garza-Rios, L. O. 1996 Shear-free turbulence near a flat free surface. J. Fluid Mech. 320, 1951.Google Scholar
Supplementary material: PDF

Guo and Shen supplementary material

Supplementary material

Download Guo and Shen supplementary material(PDF)
PDF 166.9 KB