Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:22:18.871Z Has data issue: false hasContentIssue false

Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments

Published online by Cambridge University Press:  16 February 2015

P. Lubin*
Affiliation:
I2M, CNRS UMR 5295, Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac, France
S. Glockner
Affiliation:
I2M, CNRS UMR 5295, Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac, France
*
Email address for correspondence: [email protected]

Abstract

The scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadie, S.1998 Modélisation numérique du déferlement plongeant par méthode VOF. PhD thesis, Université Bordeaux I.Google Scholar
Abadie, S., Caltagirone, J.-P. & Watremez, P. 1998 Mécanisme de génération du jet secondaire ascendant dans un déferlement plongeant. C. R. Méc. 326, 553559.Google Scholar
Ahusborde, E. & Glockner, S. 2011 A 2D block-structured mesh partitioner for accurate flow simulations on non-rectangular geometries. Comput. Fluids 43, 213.CrossRefGoogle Scholar
Andreassen, Ø., Hvidsten, P. Ø., Fritts, D. C. & Arendt, S. 1998 Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech. 367, 2746.CrossRefGoogle Scholar
Ashurst, W. T. & Meiburg, E. 1988 Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 180, 87116.CrossRefGoogle Scholar
Battjes, J. A. 1988 Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257293.CrossRefGoogle Scholar
BBC 2009 South Pacific, Episode 1: Ocean of islands. DVD. Executive Producer: Fiona Pitcher. Series Producer: Huw Cordey. BBC/Discovery Channel co-production. BBC Worldwide, via YouTube: http://www.youtube.com/watch?v=7BOhDaJH0m4.Google Scholar
Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499525.CrossRefGoogle Scholar
Blenkinsopp, C. E. & Chaplin, J. R. 2011 Void fraction measurements and scale effects in breaking waves in freshwater and seawater. Coast. Engng 58, 417428.CrossRefGoogle Scholar
Bonmarin, P. 1989 Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405433.CrossRefGoogle Scholar
Brochini, M. & Peregrine, D. H. 2001 The dynamics of turbulence at free surfaces: Part 1. Description of strong turbulence at a free surface. J. Fluid Mech. 449, 225254.CrossRefGoogle Scholar
Brouilliot, D. & Lubin, P. 2013 Numerical simulations of air entrainment in a plunging jet of liquid. J. Fluids Struct. 43, 428440.CrossRefGoogle Scholar
Brucker, K. A., O’Shea, T. T., Dommermuth, D. G. & Adams, P.2010 Three-dimensional simulations of deep-water breaking waves. In Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, CA, USA, 12–17 September 2010. US Office of Naval Research.Google Scholar
Chen, G., Kharif, C., Zaleski, S. & Li, J. 1999 Two-dimensional Navier–Stokes simulation of breaking waves. Phys. Fluids 11, 121133.CrossRefGoogle Scholar
Christensen, E. D. 2006 Large eddy simulation of spilling and plunging breakers. Coast. Engng 53, 463485.CrossRefGoogle Scholar
Christensen, E. D. & Deigaard, R. 2001 Large eddy simulation of breaking waves. Coast. Engng 42, 5386.CrossRefGoogle Scholar
Dalrymple, R. A. & Rogers, B. D. 2006 Numerical modeling of water waves with the SPH method. Coast. Engng 53, 141147.CrossRefGoogle Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.CrossRefGoogle ScholarPubMed
Drazen, D. A., Melville, W. K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.CrossRefGoogle Scholar
Duncan, J. H., Qiao, H., Philomin, V. & Wenz, A. 1999 Gentle spilling breakers: crest profile evolution. J. Fluid Mech. 39, 191222.CrossRefGoogle Scholar
Falgout, R. D., Jones, J. E. & Yang, U. M. 2006 The design and implementation of HYPRE, a library of parallel high performance preconditioners. In Numerical Solution of Partial Differential Equations on Parallel Computers (ed. Bruaset, A. M. & Tveito, A.), chap. 51, pp. 267294. Springer.CrossRefGoogle Scholar
Fritts, D. C., Arendt, S. & Andreassen, Ø. 1998 Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech. 367, 4765.CrossRefGoogle Scholar
Fritts, D. C., Isler, J. R. & Andreassen, Ø. 1994 Gravity wave breaking in two and three dimensions: 2. Three-dimensional evolution and instability structure. J. Geophys. Res. 99 (D4), 81098123.Google Scholar
Goda, K. 1979 A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30 (1), 7695.CrossRefGoogle Scholar
Gomez-Ledesma, R., Kiger, K. T. & Duncan, J. H. 2011 The impact of a translating plunging jet on a pool of the same liquid. J. Fluid Mech. 680, 530.CrossRefGoogle Scholar
Handler, R. A., Savelyev, I. & Lindsey, M. 2012 Infrared imagery of streak formation in a breaking wave. Phys. Fluids 24 (12), 121701.CrossRefGoogle Scholar
Henderson, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.CrossRefGoogle Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013 Simulating coastal engineering processes with OpenFOAM. Coast. Engng 71, 119134.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, pp. 193208. Center for Turbulence Research.Google Scholar
Iafrati, A. 2009 Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371411.CrossRefGoogle Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. 116, C07024.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kataoka, I. 1986 Local instant formulation of two-phase flow. Intl J. Multiphase Flow 12 (5), 745758.CrossRefGoogle Scholar
Kiger, K. T. & Duncan, J. H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.CrossRefGoogle Scholar
Kimmoun, O. & Branger, H. 2007 A PIV investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech. 588, 353397.CrossRefGoogle Scholar
Kubo, H. & Sunamura, T.2001 Large-scale turbulence to facilitate sediment motion under spilling breakers. In Proceedings of the ASCE 4th International Conference on Coastal Dynamics (ed. H. Hanson & M. Larson), pp. 212–221.Google Scholar
Lakehal, D. & Liovic, P. 2011 Turbulence structure and interaction with steep breaking waves. J. Fluid Mech. 674, 156.CrossRefGoogle Scholar
Lamarre, E.1993 An experimental study of air entrainment by breaking waves. PhD thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.CrossRefGoogle Scholar
Lamarre, E. & Melville, W. K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.CrossRefGoogle Scholar
Landrini, M., Colagrossi, A., Greco, M. & Tulin, M. P. 2007 Gridless simulations of splashing processes and near-shore bore propagation. J. Fluid Mech. 591, 183213.CrossRefGoogle Scholar
Lasheras, J. C., Cho, J. S. & Maxworthy, T. 1986 On the origin and evolution of streamwise vortical structures in a plane, free shear layer. J. Fluid Mech. 172, 231258.CrossRefGoogle Scholar
Lasheras, J. C. & Choi, H. 1988 Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 5386.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1992 Capillary rollers and bores. J. Fluid Mech. 240, 659679.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1995 On the disintegration of the jet in a plunging breaker. J. Phys. Oceanogr. 25 (10), 24582462.2.0.CO;2>CrossRefGoogle Scholar
Lubin, P.2004 Large eddy simulation of plunging breaking waves. PhD thesis, Université Bordeaux I (in English).Google Scholar
Lubin, P., Chanson, H. & Glockner, S. 2010 Large eddy simulation of turbulence generated by a weak breaking tidal bore. Environ. Fluid Mech. 10 (5), 587602.CrossRefGoogle Scholar
Lubin, P., Glockner, S., Kimmoun, O. & Branger, H. 2011 Numerical study of the hydrodynamics of regular waves breaking over a sloping beach. Eur. J. Mech. (B/Fluids) 30 (6), 552564.CrossRefGoogle Scholar
Lubin, P., Vincent, S., Abadie, S. & Caltagirone, J.-P. 2006 Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Engng 53, 631655.CrossRefGoogle Scholar
Melville, W. K., Veron, F. & White, C. J. 2002 The velocity field under breaking waves: coherent structures and turbulence. J. Fluid Mech. 454, 203233.CrossRefGoogle Scholar
Nadaoka, K., Hino, M. & Koyano, Y. 1989 Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech. 204, 359387.CrossRefGoogle Scholar
Narayanaswamy, M. & Dalrymple, R. A. 2002 An experimental study of surface instabilities during wave breaking. In Proceedings of the ASCE 28th International Conference on Coastal Engineering (ed. Smith, J. M.), vol. 1, pp. 344355. World Scientific.Google Scholar
Neu, J. C. 1984 The dynamics of stretched vortices. J. Fluid Mech. 43, 253276.CrossRefGoogle Scholar
Peregrine, D. H. 1981 The fascination of fluid mechanics. J. Fluid Mech. 106, 5980.CrossRefGoogle Scholar
Peregrine, D. H. 1983 Breaking waves on beaches. Annu. Rev. Fluid Mech. 15, 149178.CrossRefGoogle Scholar
Poux, A., Glockner, S. & Azaiez, M. 2011 Improvements on open and traction boundary for Navier–Stokes time splitting methods. J. Comput. Phys. 230 (10), 40114027.CrossRefGoogle Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331 (1622), 735800.Google Scholar
Rojas, G. & Loewen, M. R. 2010 Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res. 115, C08001.Google Scholar
Sagaut, P. 1998 Large Eddy Simulation for Incompressible Flows – An Introduction. Springer.Google Scholar
Saruwatari, A., Watanabe, Y. & Ingram, D. M. 2009 Scarifying and fingering surfaces of plunging jets. Coast. Engng 56 (11–12), 11091122.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Song, C. & Sirviente, A. I. 2004 A numerical study of breaking waves. Phys. Fluids 16 (7), 26492667.CrossRefGoogle Scholar
Ting, F. C. K. 2006 Large-scale turbulence under a solitary wave. Coast. Engng 53, 441462.CrossRefGoogle Scholar
Watanabe, Y. & Saeki, H. 1999 Three-dimensional large eddy simulation of breaking waves. Coast. Engng J. Japan 41 (2), 281301.CrossRefGoogle Scholar
Watanabe, Y., Saeki, H. & Hosking, R. J. 2005 Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291328.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Wu, J., Sheridan, J., Welsh, M. C. & Hourigan, K. 1996 Three-dimensional vortex structures in a cylinder wake. J. Fluid Mech. 312, 201222.CrossRefGoogle Scholar
Yasuda, T., Mutsuda, H., Mizutani, N. & Matsuda, H. 1999 Relationships of plunging jet size to kinematics of breaking waves with spray and entrained air bubbles. Coast. Engng J. Japan 41 (2), 269280.CrossRefGoogle Scholar
Youngs, D. L. 1982 Time-dependent multimaterial flow with large fluid distortion. In Numerical Methods for Fluid Dynamics (ed. Morton, K. W. & Baines, M. J.). Academic Press.Google Scholar
Zhang, D. & Sunamura, T. 1994 Multiple bar formation by breaker-induced vortices: a laboratory approach. In Proceedings of the ASCE 24th International Conference on Coastal Engineering (ed. Edge, B. L.), pp. 28562870.Google Scholar

Lubin and Glockner supplementary movie

The generation and evolution of aerated vortex filaments is visualized using the phase function isosurface C = 0.5, to characterize the free-surface, and isocontours of the axial vorticity calculated in an axis x' tilted 50° from the horizontal axis x (ωx'=700 s-1 in red and ωx'=-1000 s-1 in orange). Shown is a 3D strip extracted from the whole numerical domain. The frame rate is 10 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 9.8 MB

Lubin and Glockner supplementary movie

The generation and evolution of aerated vortex filaments is visualized using the phase function isosurface C = 0.5, to characterize the free-surface, and isocontours of the axial vorticity calculated in an axis x' tilted 50° from the horizontal axis x (ωx'=700 s-1 in red and ωx'=-1000 s-1 in orange). Shown is a 3D strip extracted from the whole numerical domain. The frame rate is 10 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 19 MB

Lubin and Glockner supplementary movie

The generation and evolution of aerated vortex filaments are visualized using the phase function isosurface C = 0.5, to characterize the free-surface, and the Line Integral Convolution (LIC) calculated in the 2D plane (xz), to display the evolution of the flow. The celerity of the initial wave is subtracted to the longitudinal velocity component to be in a frame-of-reference moving with the wave. In the top right corner, movie 1 is inserted, showing the evolution of the vorticity at the same sampling time. The frame rate is 10 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 9.1 MB

Lubin and Glockner supplementary movie

The generation and evolution of aerated vortex filaments are visualized using the phase function isosurface C = 0.5, to characterize the free-surface, and the Line Integral Convolution (LIC) calculated in the 2D plane (xz), to display the evolution of the flow. The celerity of the initial wave is subtracted to the longitudinal velocity component to be in a frame-of-reference moving with the wave. In the top right corner, movie 1 is inserted, showing the evolution of the vorticity at the same sampling time. The frame rate is 10 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 9.9 MB

Lubin and Glockner supplementary movie

The evolution of the coherent vortex filaments underneath the breaking wave is visualized using the Q-criterion (green isosurface Q=1), to identify the vortex envelopes, and the blue phase function isosurface C=0.5, showing the air entrainment. Shown is a 3D view under the breaking wave, between t=0.1156 s and 0.2676 s. The frame rate is 15 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 10.1 MB

Lubin and Glockner supplementary movie

The evolution of the coherent vortex filaments underneath the breaking wave is visualized using the Q-criterion (green isosurface Q=1), to identify the vortex envelopes, and the blue phase function isosurface C=0.5, showing the air entrainment. Shown is a 3D view under the breaking wave, between t=0.1156 s and 0.2676 s. The frame rate is 15 fps.

Download Lubin and Glockner supplementary movie(Video)
Video 21 MB