Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:00:56.322Z Has data issue: false hasContentIssue false

Numerical investigation of skewed spatially evolving mixing layers

Published online by Cambridge University Press:  19 June 2020

M. Meldi*
Affiliation:
Department of Fluid Flow, Heat Transfer and Combustion, Institut PPRIME, CNRS, ENSMA, Université de Poitiers, UPR 3346, SP2MI - Téléport, 211 Bd. Marie et Pierre Curie, BP 30179, 86962Futuroscope Chasseneuil CEDEX, France
A. Mariotti
Affiliation:
Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Via G. Caruso 8, 56122Pisa, Italy
M. V. Salvetti
Affiliation:
Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Via G. Caruso 8, 56122Pisa, Italy
P. Sagaut
Affiliation:
M2P2, Aix-Marseille Université, CNRS, École Centrale Marseille, 13451Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The sensitivity of turbulent dynamics in spatially evolving mixing layers to small skew angles $\unicode[STIX]{x1D703}$ is investigated via direct numerical simulation. Angle $\unicode[STIX]{x1D703}$ is a measure of the lack of parallelism between the two asymptotic flows, whose interaction creates the turbulent mixing region. The analysis is performed considering a large range of values of the shear intensity parameter $\unicode[STIX]{x1D6FC}$. This two-dimensional parameter space is explored using the results of a database of 18 direct numerical simulations. Instantaneous fields as well as time-averaged quantities are investigated, highlighting important mechanisms in the emergence of turbulence and its characteristics for this class of flows. In addition, a stochastic approach is used in which $\unicode[STIX]{x1D703}$ and $\unicode[STIX]{x1D6FC}$ are considered as random variables with a given probability distribution. The response surfaces of flow statistics in the parameter space are built through non-intrusive generalized polynomial chaos. It is found that variations of the parameter $\unicode[STIX]{x1D6FC}$ have a primary effect on the growth of the mixing region. A secondary effect associated with $\unicode[STIX]{x1D703}$ is observed as well. Higher values for the skew angle are responsible for a rapid increase in growth of the inlet structures, enhancing the development of the mixing region. The impact on the turbulence features and, in particular, on the Reynolds stress tensor is also significant. A modification of the normalized diagonal components of the Reynolds stress tensor due to $\unicode[STIX]{x1D703}$ is observed. In addition, the interaction between the parameters $\unicode[STIX]{x1D703}$ and $\unicode[STIX]{x1D6FC}$ is here the governing element.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Azim, M. & Sadrul Islam, A. K. M. 2003 Plane mixing layers from parallel and non-parallel merging of two streams. Exp. Fluids 34, 220226.CrossRefGoogle Scholar
Attili, A. & Bisetti, F. 2012 Statistics and scaling of turbulence in a spatially developing mixing layer at Re 𝜆 = 250. Phys. Fluids 24 (3), 035109.CrossRefGoogle Scholar
Balaras, E., Piomelli, U. & Wallace, J. M. 2001 Self-similar states in turbulent mixing layers. J. Fluid Mech. 446, 124.CrossRefGoogle Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41 (1), 81139.CrossRefGoogle Scholar
Colonius, T. & Lele, S. K. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Delport, S., Baelmans, M. & Meyers, J. 2011 Maximizing dissipation in a turbulent shear flow by optimal control of its initial state. Phys. Fluids 23, 045105.CrossRefGoogle Scholar
Edeling, W. N., Cinnella, P., Dwight, R. P. & Bijl, H. 2014 Bayesian estimates of parameter variability in the k-epsilon turbulence model. J. Comput. Phys. 258, 7394.CrossRefGoogle Scholar
Edeling, W. N., Iaccarino, G. & Cinnella, P. 2018 Data-free and data-driven RANS predictions with quantified uncertainty. Flow Turbul. Combust. 100, 593616.CrossRefGoogle Scholar
Ferziger, J. H. & Peric, M. 2001 Computational Methods for Fluid Dynamics. Springer.Google Scholar
Fiedler, H. E., Nayeri, C., Spieweg, R. & Paschereit, C. O. 1998 Three-dimensional mixing layers and their relatives. Exp. Therm. Fluid Sci. 16 (1–2), 321.CrossRefGoogle Scholar
Ghanem, R. & Spanos, P. 1991 Stochastic Finite Elements: A Spectral Approach. Springer.CrossRefGoogle Scholar
Gorle, C. & Iaccarino, G. 2013 A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier–Stokes simulations. Phys. Fluids 25, 055105.CrossRefGoogle Scholar
Hackett, J. E. & Cox, D. K. 1970 The three-dimensional mixing layer between two grazing perpendicular streams. J. Fluid Mech. 43 (1), 7796.CrossRefGoogle Scholar
Hamilton, L. & Bayoan Cal, R. 2015 Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors. Phys. Fluids 27 (1), 015102.CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16 (1), 365422.CrossRefGoogle Scholar
Hug, S. N. & McMullan, W. A. 2019 The influence of velocity ratio on the evolution of streamwise vortices in the simulated plane mixing layer. Eur. J. Mech. (B/Fluids) 76, 166177.CrossRefGoogle Scholar
Issa, R. I. 1986 Solution of the implicitly discretized fluid-flow equations by operator-splitting. J. Comput. Phys. 62, 4065.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kaltenbach, H.-J. 2003 The effect of sweep-angle variation on the turbulence structure in a separated, three-dimensional flow. Theor. Comput. Fluid Dyn. 16, 187210.CrossRefGoogle Scholar
Ko, J., Lucor, D. & Sagaut, P. 2008 Sensitivity of two-dimensional spatially developing mixing layers with respect to uncertain inflow conditions. Phys. Fluids 20 (7), 077102077120.CrossRefGoogle Scholar
Le Maître, O. P. & Knio, O. M. 2011 Spectral Methods for Uncertainty Quantification, Scientific Computation Series, vol. 19. Springer.Google Scholar
Lu, G. & Lele, S. K. 1993 Inviscid instability of a skewed compressible mixing layer. J. Fluid Mech. 249, 441463.CrossRefGoogle Scholar
Lu, G. & Lele, S. K. 1999a Asymptotic growth of disturbances from spatially compact source in a skewed mixing layer. Phys. Fluids 11 (5), 11531160.CrossRefGoogle Scholar
Lu, G. & Lele, S. K. 1999b Inviscid instability of compressible swirling mixing layers. Phys. Fluids 11 (2), 450461.CrossRefGoogle Scholar
Lucor, D. & Karniadakis, G. E. 2004 Noisy inflows cause a shedding-mode switching in flow past an oscillating cylinder. Phys. Rev. Lett. 92, 154501.CrossRefGoogle Scholar
Lucor, D., Meyers, J. & Sagaut, P. 2007 Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid Mech. 585, 255279.CrossRefGoogle Scholar
Margheri, L., Meldi, M., Salvetti, M. V. & Sagaut, P. 2014 Epistemic uncertainties in RANS model free coefficients. Comput. Fluids 102, 315335.CrossRefGoogle Scholar
Mariotti, A., Salvetti, M. V., Omrani, P. S. & Witteveen, J. A. S. 2016 Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5 : 1 cylinder. Comput. Fluids 136, 170192.CrossRefGoogle Scholar
Mariotti, A., Siconolfi, L. & Salvetti, M. V. 2017 Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5 : 1 rectangular cylinder. Eur. J. Mech. (B/Fluids) 62, 149165.CrossRefGoogle Scholar
McMullan, W. A., Gao, S. & Coats, C. M. 2007 A comparative study of inflow conditions for two- and three-dimensional spatially developing mixing layers using large eddy simulation. Intl J. Numer. Meth. Fluids 585, 589610.CrossRefGoogle Scholar
McMullan, W. A., Gao, S. & Coats, C. M. 2009 The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers. Intl J. Heat Fluid Flow 30, 10541066.CrossRefGoogle Scholar
Mehta, R. D. 1991 Effect of velocity ratio on plane mixing layer development: influence of the splitter plate wake. Exp. Fluids 10, 194204.CrossRefGoogle Scholar
Meldi, M. & Poux, A. 2017 A reduced order Kalman filter model for sequential data assimilation of turbulent flows. J. Comput. Phys. 347, 207234.CrossRefGoogle Scholar
Meldi, M., Salvetti, M. V. & Sagaut, P. 2012 Quantification of errors in large-eddy simulations of a spatially evolving mixing layer using polynomial chaos. Phys. Fluids 24 (3), 035101.CrossRefGoogle Scholar
Naughton, J. W., Cattafesta, L. N. III & Settles, G. S. 1997 An experimental study of compressible turbulent mixing enhancement in swirling jets. J. Fluid Mech. 330, 271305.CrossRefGoogle Scholar
OpenCFD Ltd, ESI Group.2004 The open source CFD toolbox. Available at: https://www.openfoam.com.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.CrossRefGoogle Scholar
Salvetti, M. V., Orlandi, P. & Verzicco, R. 1996 Numerical simulations of transitional axisymmetric coaxial jets. AIAA J. 34 (4), 736743.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 3-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.CrossRefGoogle Scholar
Slessor, M. D., Bond, C. L. & Dimotakis, P. E. 1998 Turbulent shear-layer mixing at high Reynolds numbers: effects of inflow conditions. J. Fluid Mech. 376, 115138.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Wang, Y., Tanahashi, M. & Miyauchi, T. 2007 Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer. Intl J. Heat Fluid Flow 28, 12801290.CrossRefGoogle Scholar
Wu, J. L., Wang, J. X. & Xiao, H. 2016 A Bayesian calibration-prediction method for reducing model-form uncertainties with application in RANS simulations. Flow Turbul. Combust. 97, 761786.CrossRefGoogle Scholar
Xiao, H. & Cinnella, P. 2019 Quantification of model uncertainty in RANS simulations: a review. Prog. Aerosp. Sci. 108, 131.CrossRefGoogle Scholar
Xiu, D. & Karniadakis, G. E. 2002 The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2), 619644.CrossRefGoogle Scholar
Yang, W. B., Zhang, H. Q., Chan, C. K. & Lin, W. Y. 2004 Large eddy simulation of mixing layer. J. Comput. Appl. Maths 163, 311318.CrossRefGoogle Scholar
Yee, H. C., Sandham, N. D. & Djomehri, M. J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199238.CrossRefGoogle Scholar