Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T05:48:53.591Z Has data issue: false hasContentIssue false

Non-modal stability analysis of the boundary layer under solitary waves

Published online by Cambridge University Press:  12 December 2017

Joris C. G. Verschaeve*
Affiliation:
University of Oslo, PO Box 1072 Blindern, 0316 Oslo, Norway
Geir K. Pedersen
Affiliation:
University of Oslo, PO Box 1072 Blindern, 0316 Oslo, Norway
Cameron Tropea
Affiliation:
Technische Universität Darmstadt, 64347 Griesheim, Germany
*
Email address for correspondence: [email protected]

Abstract

In the present work, a stability analysis of the bottom boundary layer under solitary waves based on energy bounds and non-modal theory is performed. The instability mechanism of this flow consists of a competition between streamwise streaks and two-dimensional perturbations. For lower Reynolds numbers and early times, streamwise streaks display larger amplification due to their quadratic dependence on the Reynolds number, whereas two-dimensional perturbations become dominant for larger Reynolds numbers and later times in the deceleration region of this flow, as the maximum amplification of two-dimensional perturbations grows exponentially with the Reynolds number. By means of the present findings, we can give some indications on the physical mechanism and on the interpretation of the results by direct numerical simulation in Vittori & Blondeaux (J. Fluid Mech., vol. 615, 2008, pp. 433–443) and Özdemir et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) and by experiments in Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231). In addition, three critical Reynolds numbers can be defined for which the stability properties of the flow change. In particular, it is shown that this boundary layer changes from a monotonically stable to a non-monotonically stable flow at a Reynolds number of $Re_{\unicode[STIX]{x1D6FF}}=18$.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Benjamin, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241270.CrossRefGoogle Scholar
Bertolotti, F., Herbert, T. & Spalart, P. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.CrossRefGoogle Scholar
Biau, D. 2016 Transient growth of perturbations in Stokes oscillatory flows. J. Fluid Mech. 794, R4.CrossRefGoogle Scholar
Blondeaux, P., Pralits, J. & Vittori, G. 2012 Transition to turbulence at the bottom of a solitary wave. J. Fluid Mech. 709, 396407.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Carr, M. & Davies, P. A. 2006 The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids 18, 016601.CrossRefGoogle Scholar
Carr, M. & Davies, P. A. 2010 Boundary layer flow beneath an internal solitary wave of elevation. Phys. Fluids 22, 026601.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12 (1), 120130.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.CrossRefGoogle Scholar
Davis, S. H. & von Kerczek, C. 1973 A reformulation of energy stability theory. Arch. Rat. Mech. Anal. 52, 112117.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Hydrodynamic stability. Phys. Fluids 18, 487.CrossRefGoogle Scholar
Fenton, J. 1972 A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257271.CrossRefGoogle Scholar
Frigo, M. & Johnson, S. G. 2005 The design and implementation of FFTW3. In Proceedings of the IEEE, vol. 93, pp. 216231.Google Scholar
Galassi, M., Davies, J., Theiler, B., Gough, B., Jungman, G., Alken, P., Booth, M. & Rossi, F. 2009 GNU Scientific Library Reference Manual. Network Theory Ltd.Google Scholar
Gaster, M. 2016 Boundary layer transition initiated by a random excitation. In Book of Papers 24th International Congress of Theoretical and Applied Mechanics. International Union of Theoretical and Applied Mechanics (IUTAM).Google Scholar
Grimshaw, R. 1971 The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611622.CrossRefGoogle Scholar
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.CrossRefGoogle Scholar
Jimenez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.CrossRefGoogle Scholar
Joseph, D. D. 1966 Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rat. Mech. Anal. 22, 163.CrossRefGoogle Scholar
von Kerczek, C. & Davis, S. H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid Mech. 62, 753773.CrossRefGoogle Scholar
Levin, O. & Henningson, D. S. 2003 Exponential versus algebra growth and transition prediction in boundary layer flow. Flow Turbul. Combust. 70, 183210.CrossRefGoogle Scholar
Liu, P. L.-F. & Orfila, A. 2004 Viscous effects on transient long-wave propagation. J. Fluid Mech. 520, 8392.CrossRefGoogle Scholar
Liu, P. L.-F., Park, Y. S. & Cowen, E. A. 2007 Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 574, 449463.CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.CrossRefGoogle Scholar
Luo, J. & Wu, X. 2010 On the linear instability of a finite Stokes layer: instantaneous versus floquet modes. Phys. Fluids 22, 113.CrossRefGoogle Scholar
Miles, J. W. 1980 Solitary waves. Annu. Rev. Fluid Mech. 12, 1143.CrossRefGoogle Scholar
Özdemir, C. E., Hsu, T.-J. & Balachandar, S. 2013 Direct numerical simulations of instability and boundary layer turbulence under a solitary wave. J. Fluid Mech. 731, 545578.CrossRefGoogle Scholar
Park, Y. S., Verschaeve, J. C. G., Pedersen, G. K. & Liu, P. L.-F. 2014 Corrigendum and addendum for boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 753, 554559.CrossRefGoogle Scholar
Sadek, M. M., Parras, L., Diamessis, P. J. & Liu, P. L.-F. 2015 Two-dimensional instability of the bottom boundary layer under a solitary wave. Phys. Fluids 27, 044101.CrossRefGoogle Scholar
Sanderson, C. & Curtin, R. 2016 Armadillo: a template-based C++ library for linear algebra. J. Open Source Softw. 1, 26.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Shaikh, F. N. & Gaster, M. 1994 The non-linear evolution of modulated waves in a boundary layer. J. Engng Maths 28, 5571.CrossRefGoogle Scholar
Shen, J. 1994 Efficient spectral-Galerkin method I. Direct solvers for the second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 14891505.CrossRefGoogle Scholar
Shen, J. 1995 Efficient spectral-Galerkin method II. Direct solvers of second fourth order equations by using Chebyshev polynomials. SIAM J. Sci. Comput. 16 (1), 7487.CrossRefGoogle Scholar
Shuto, N. 1976 Transformation of nonlinear long waves. In Proceedings of 15th Conference on Coastal Engineering. American Society of Civil Engineers.Google Scholar
Sumer, B. M., Jensen, P. M., Sørensen, L. B., Fredsøe, J., Liu, P. L.-F. & Carstensen, S. 2010 Coherent structures in wave boundary layers. Part 2. Solitary motion. J. Fluid Mech. 646, 207231.CrossRefGoogle Scholar
Tanaka, H., Winarta, B., Suntoyo & Yamaji, H. 2011 Validation of a new generation system for bottom boundary layer beneath solitary wave. Coast. Engng 59, 4656.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability with eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Verschaeve, J. C. G. & Pedersen, G. K. 2014 Linear stability of boundary layers under solitary waves. J. Fluid Mech. 761, 62104.CrossRefGoogle Scholar
Vittori, G. & Blondeaux, P. 2008 Turbulent boundary layer under a solitary wave. J. Fluid Mech. 615, 433443.CrossRefGoogle Scholar
Vittori, G. & Blondeaux, P. 2011 Characteristics of the boundary layer at the bottom of a solitary wave. Coast. Engng 58, 206213.CrossRefGoogle Scholar