Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T06:58:34.871Z Has data issue: false hasContentIssue false

Nonlinear wave interactions in shear flows. Part 2. Third-order theory

Published online by Cambridge University Press:  29 March 2006

J. R. Usher
Affiliation:
Department of Mathematics and Physics, Glasgow College of Technology, Glasgow, Scotland
A. D. D. Craik
Affiliation:
Department of Applied Mathematics University of St Andrews, Fife, Scotland
F. Hendriks
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

Abstract

The temporal evolution of a resonant triad of wave components in a parallel shear flow has been investigated at second order in the wave amplitudes by Craik (1971) and Usher & Craik (1974). The present work extends these analyses to include terms of third order and thereby develops the resonance theory to the same order of approximation as the non-resonant third-order theory of Stuart (1960, 1962).

Asymptotic analysis for large Reynolds numbers reveals that the magnitudes of the third-order interaction coefficients, like certain of those at second order, are remarkably large. The implications of this are discussed with particular reference to the roles of resonance and of three-dimensionality in nonlinear instability and to the range of validity of the perturbation analysis.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benney, D. J. 1961 J. Fluid Mech. 10, 209236.
Benney, D. J. 1964 Phys. Fluids, 7, 319326.
Benney, D. J. & Bergeron, R. F. 1969 Studies in Appl. Math. 48, 181204.
Benney, D. J. & Lin, C. C. 1960 Phys. Fluids, 3, 656657.
Craik, A. D. D. 1971 J. Fluid Mech. 50, 393413.
Craik, A. D. D. 1975 Proc. Roy. Soc. A 343, 351362.
Davey, A., Hocking, L. M. & Stewartson, K. 1974 J. Fluid Mech. 63, 529536.
Davis, R. E. 1969 J. Fluid Mech. 36, 337346.
Diprima, R. C., Eckhaus, W. & Segel, L. A. 1971 J. Fluid Mech. 49, 705744.
Gargett, A. E. & Hughes, B. A. 1972 J. Fluid Mech. 52, 179191.
Hocking, L. M. & Stewartson, K. 1971 Mathematika, 18, 219239.
Hocking, L. M. & Stewartson, K. 1972 Proc. Roy. Soc. A 326, 289313.
Hocking, L. M., Stewartson, K. & Stuart, J. T. 1972 J. Fluid Mech. 51, 705735.
Kelly, R. E. 1968 J. Fluid Mech. 31, 789799.
Klebanoff, P. S. & Tidstrom, K. D. 1959 N.A.S.A. Tech. Note, D-195.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 134.
Landahl, M. T. 1972 J. Fluid Mech. 56, 775802.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Pekeris, C. L. & Shkoller, B. 1967 J. Fluid Mech. 29, 3138.
Pekeris, C. L. & Shkoller, B. 1969 J. Fluid Mech. 39, 629639.
Raetz, G. S. 1959 Norair Rep. NOR-59-383. Hawthorne, California.
Reid, W. H. 1965 In Basic Developments in Fluid Mechanics, vol. 1 (ed. M. Holt), pp. 249–307. Academic.
Reynolds, W. C. & Potter, M. C. 1967 J. Fluid Mech. 27, 465492.
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. New York: Benjamin.
Stewartson, K. & Stuart, J. T. 1971 J. Fluid Mech. 48, 529545.
Stuart, J. T. 1960 J. Fluid Mech. 9, 353370.
Stuart, J. T. 1962 Adv. in Aero. Sci. 3, 121142.
Usher, J. R. 1974 Ph.D. dissertation, University of St Andrews.
Usher, J. R. & Craik, A. D. D. 1974 J. Fluid Mech. 66, 209221.
Watson, J. 1962 J. Fluid Mech. 14, 211221.