Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-17T22:56:03.913Z Has data issue: false hasContentIssue false

Nonlinear stability of a stratified shear flow: a viscous critical layer

Published online by Cambridge University Press:  21 April 2006

S. M. Churilov
Affiliation:
Siberian Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Academy of Sciences of the U.S.S.R., Siberian Department, Irkutsk 33, P.O. Box 4, 664033 USSR
I. G. Shukhman
Affiliation:
Siberian Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Academy of Sciences of the U.S.S.R., Siberian Department, Irkutsk 33, P.O. Box 4, 664033 USSR

Abstract

The nonlinear stability of a weakly supercritical shear flow with vertical temperature (density) stratification is investigated. It is shown that the usual Lin's rule of ‘indenting’ a singularity at the point of wave-flow resonance (the so-called critical layer, CL) is inapplicable for evaluating the nonlinear effects. To this end, a consistent procedure for deriving a nonlinear evolution equation is suggested and realized for the viscous critical-layer regime. The procedure takes into account the interaction of the fundamental harmonic with the second harmonic as well as with the zeroth one (i.e. with the mean-flow distortion). It is shown that the nonlinear factors both act in the same manner - at Prandtl number η ≤ 1 they limit the instability but at η > 1 they enhance it and convey a ‘burst-like’ character to it.

It is found that CL is the region of strongest interactions between the harmonics. Hence the nonlinear contribution does not actually depend on the type of original flow model chosen. A simple physical interpretation is given to illustrate the mechanism governing the nonlinearity effects on the stability in the viscous critical-layer regime.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benney, D. J. & Bergeron, R. F. 1969 Stud. Appl. Math. 48, 181204.
Benney, D. J. & Maslowe, S. A. 1975 Stud. Appl. Math. 54, 181205.
Brown, S. N., Rosen, A. S. & Maslowe S. A. 1981 Proc. R. Soc. Lond. A 375, 271293.
Davis, R. E. 1969 J. Fluid Mech. 36, 337346.
Drazin, P. G. 1958 J. Fluid Mech. 4, 214224.
Drazin, P. G. & Howard, L. N. 1966 Adv. Appl. Mech. 9, 189.
Fedoryuk, M. V. 1983 Asymptotic Methods for Linear Ordinary Differential Equations. Nauka (in Russian).
Gossard, E. E. & Hooke, W. H. 1975 Waves in the Atmosphere. Elsevier.
Huerre, P. 1977 AGARD Conf. Proc. No. 224, paper No. 5.
Huerre, P. 1980 Phil. Trans. R. Soc. Lond. A 293, 643672.
Kelley, R. E. & Maslowe, S. A. 1970 Stud. Appl. Math. 49, 301326.
Koppel, D. 1964 J. Math. Phys. 5, 963982.
Landau, L. D. & Lifshitz, E. M. 1953 Mechanics of Continuous Media. Gostekhizdat (in Russian).
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Makov, Yu. N. & Stepanyants, Yu. A. 1984 J. Fluid Mech. 140, 110.
Maslowe, S. A. 1972 Stud. Appl. Mat. 51, 116.
Maslowe, S. A. 1973 Boundary-Layer Met. 5, 4352.
Maslowe, S. A. 1977a J. Fluid Mech. 79, 689702.
Maslowe, S. A. 1977b Q. J. R. Met. Soc. 103, 769783.
Maslowe, S. A. & Thompson, J. M. 1971 Phys. Fluids 14, 453458.
Miles, J. W. 1961 J. Fluid Mech. 10, 496508.
Nayfeh, A. H. 1981 Introduction to Perturbation Techniques. Wiley.
Ostrovsky, L. A., Stepanyants, Yu. A. & Tsimring, L. S. 1983 Nonlinear Waves. Self-Organization (ed. A. V. Gaponov-Grekhov and M. I. Rabinovich), pp. 204239. Nauka (in Russian).
Reutov, V. P. 1982 Zh. Prikl. mekh. i tekhn. fiz. 4, 4354 (in Russian).
Romanova, N. N. & Tseitlin, V. Yu. 1983 Izv. Akad. Nauk. SSSR. Fiz. Atmosfery i Okeana. 19, 796806 (in Russian).
Schade, H. 1964 Phys. Fluids 7, 623628.
Supplementary material: PDF

Churilov and Shukhman supplementary material

Supplementary Appendix B

Download Churilov and Shukhman supplementary material(PDF)
PDF 4.2 MB