Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T17:24:09.596Z Has data issue: false hasContentIssue false

A nonlinear stability analysis of the Bénard–Marangoni problem

Published online by Cambridge University Press:  20 April 2006

A. Cloot
Affiliation:
Department of Mechanics, University of Liège, B5, Sart Tilman, 4000 Liège, Belgium
G. Lebon
Affiliation:
Department of Mechanics, University of Liège, B5, Sart Tilman, 4000 Liège, Belgium

Abstract

A nonlinear analysis of Bénard–Marangoni convection in a horizontal fluid layer of infinite extent is proposed. The nonlinear equations describing the fields of temperature and velocity are solved by using the Gorkov–Malkus–Veronis technique, which consists of developing the steady solution in terms of a small parameter measuring the deviation from the marginal state. This work generalizes an earlier paper by Schlüter, Lortz & Busse wherein only buoyancy-driven instabilities were handled. In the present work both buoyancy and temperature-dependent surface-tension effects are considered. The band of allowed steady states of convection near the onset of convection is determined as a function of the Marangoni number and the wavenumber. The influence of various dimensionless quantities like Rayleigh, Prandtl and Biot numbers is examined. Supercritical as well as subcritical zones of instability are displayed. It is found that hexagons are allowable flow patterns.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Rev. Gen. Sci. Pure Appl. 11, 1261.
Block, M. 1956 Nature 178, 650.
Busse, F. 1967 J. Maths & Phys. 46, 140.
Busse, F. 1978 Rep. Prog. Phys. 41, 1929.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Cloot, A. 1983 Ph.D. thesis, Liège University.
Davis, S. H. 1969 J. Fluid Mech. 39, 347.
Davis, S. H. & Homsy, G. 1980 J. Fluid Mech. 98, 527.
E.S.A. 1981 Microgravity research in space. European Space Agency Rep. BR-05.Google Scholar
Finlayson, B. 1972 The Method of Weighted Residuals and Variational Principles. Academic.
Friedman, B. 1956 Principles and Techniques of Applied Mathematics. Wiley.
Gorkov, L. 1957 Sov. Phys. JETP 6, 311.
Joseph, D. D. 1966 Arch. Rat. Mech. Anal. 22, 163.
Koschmieder, E. 1981 In Proc. Euromech Coll. 138, Karlsruhe, March 1981, pp. 2934, Verlag 6. Braun.
Kraska, J. & Sani, R. 1979 Intl J. Heat Mass Transfer 22, 535.
Lebon, G. 1980 In Recent Developments in Thermomechanics; CISM Courses, vol. 262, pp. 221412. (ed. G. Lebon & P. Perzyna). Springer.
Lebon, G. 1982 In Stability of Thermodynamic Systems, pp. 4193. (ed. J. Casas-Vazquez & G. Lebon). Lecture Notes in Physics, vol. 164. Springer.
Lebon, G. & Gloot, A. 1982 Acta Mech. 43, 141.
Lebon, G. & Perez-Garcia, C. 1980 Bull. Acad. R. Belg. 66, 520.
Malkus, W. & Veronis, G. 1958 J. Fluid Mech. 4, 225.
Nield, D. 1964 J. Fluid Mech. 19, 341.
Palm, E. 1975 Ann. Rev. Fluid Mech. 7, 30.
Pearson, J. R. A. 1958 J. Fluid Mech. 4, 489.
Rosenblat, S., Davis, S. H. & Homsy, G. 1982 J. Fluid Mech. 120, 91.
Scanlon, J. & Segel, L. 1967 J. Fluid Mech. 30, 149.
Schlüter, A., Lortz, D. & Busse, F. 1965 J. Fluid Mech. 23, 129.
Scriven, L. & Sternling, C. 1964 J. Fluid Mech. 21, 321.
Serrin, J. 1959 J. Fluid Mech. 3, 1.
Smith, K. A. 1966 J. Fluid Mech. 24, 401.
Stuart, J. 1960 J. Fluid Mech. 9, 353.
Vidal, A. & Acrivos, A. 1966 Phys. Fluids 9, 615.