Published online by Cambridge University Press: 29 March 2006
An investigation is made of resonant triads of Tollmien-Schlichting waves in an unstable boundary layer. The triads considered are those comprising a two-dimensional wave and two oblique waves propagating at equal and opposite angles to the flow direction and such that all three waves have the same phase velocity in the downstream direction. For such a resonant triad remarkably powerful wave interations take place, which may cause a continuous and rapid transfer of energy from the primary shear flow to the disturbance. It appears that the oblique waves can grow particularly rapidly and it is suggested that such preferential growth may be responsible for the rapid development of three-dimensionality in unstable boundary layers. The non-linear energy transfer primarily takes place in the vicinity of the critical layer where the downstream propagation velocity of the waves equals the velocity of the primary flow.
The theoretical analysis is initially carried out for a general primary velocity profile; then, in order to demonstrate the essential features of the results, precise interaction equations are derived for a particular profile consisting of a layer of constant shear bounded by a uniform flow. Some exact solutions of the general interaction equations are presented, one of which has the property that the wave amplitudes become indefinitely large at a finite time. The possible relevance of the present theoretical model to the experiments of Klebanoff, Tidstrom & Sargent (1962) is examined.