Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-20T18:13:03.616Z Has data issue: false hasContentIssue false

Nonlinear optimal suppression of vortex shedding from a circular cylinder

Published online by Cambridge University Press:  23 June 2015

X. Mao*
Affiliation:
School of Engineering and Computer Sciences, Durham University, Durham DH1 3LE, UK
H. M. Blackburn
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, 3800, Australia
S. J. Sherwin
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

This study is focused on two- and three-dimensional incompressible flow past a circular cylinder for Reynolds number $\mathit{Re}\leqslant 1000$. To gain insight into the mechanisms underlying the suppression of unsteadiness for this flow we determine the nonlinear optimal open-loop control driven by surface-normal wall transpiration. The spanwise-constant wall transpiration is allowed to oscillate in time, although steady forcing is determined to be most effective. At low levels of control cost, defined as the square integration of the control, the sensitivity of unsteadiness with respect to wall transpiration is a good approximation of the optimal control. The distribution of this sensitivity suggests that the optimal control at small magnitude is achieved by applying suction upstream of the upper and lower separation points and blowing at the trailing edge. At high levels of wall transpiration, the assumptions underlying the linearized sensitivity calculation become invalid since the base flow is eventually altered by the size of the control forcing. The large-magnitude optimal control is observed to spread downstream of the separation point and draw the shear layer separation towards the rear of the cylinder through suction, while blowing along the centreline eliminates the recirculation bubble in the wake. We further demonstrate that it is possible to completely suppress vortex shedding in two- and three-dimensional flow past a circular cylinder up to $\mathit{Re}=1000$, accompanied by 70 % drag reduction when a nonlinear optimal control of moderate magnitude (with root-mean-square value 8 % of the free-stream velocity) is applied. This is confirmed through linearized stability analysis about the steady-state solution when the nonlinear optimal wall transpiration is applied. While continuously distributed wall transpiration is not physically realizable, the study highlights localized regions where discrete control strategies could be further developed. It also highlights the appropriate range of application of linear and nonlinear optimal control to this type of flow problem.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14371458.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Bearman, P. W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21 (2), 241255.CrossRefGoogle Scholar
Bearman, P. W. 1967 On vortex street wakes. J. Fluid Mech. 28 (4), 625641.CrossRefGoogle Scholar
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195222.CrossRefGoogle Scholar
Bearman, P. W. & Owen, J. 1998 Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. J. Fluids Struct. 12, 123130.CrossRefGoogle Scholar
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.CrossRefGoogle Scholar
Darekar, R. M. & Sherwin, S. J. 2001 Flow past a square-section cylinder with a wavy stagnation face. J. Fluid Mech. 426, 263295.CrossRefGoogle Scholar
Dipankar, A., Sengupta, T. K. & Talla, S. B. 2007 Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. J. Fluid Mech. 573, 171190.CrossRefGoogle Scholar
Fornberg, B. 1991 Steady incompressible flow past a row of circular cylinders. J. Fluid Mech. 225, 655671.CrossRefGoogle Scholar
Foures, D., Caulfield, C. & Schmid, P. J. 2012 Variational framework for flow optimization using seminorm constraints. Phys. Rev. E 86, 026306.Google ScholarPubMed
Gajjar, J. & Azzam, N. 2004 Numerical solution of the Navier–Stokes equations for the flow in a cylinder cascade. J. Fluid Mech. 520, 5182.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Giles, M. B. & Pierce, N. A. 2000 An introduction to the adjoint approach in design. Flow Turbul. Combust. 65, 393415.CrossRefGoogle Scholar
Gillies, E. A. 1998 Low-dimensional control of the circular cylinder wake. J. Fluid Mech. 371, 157178.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503529.CrossRefGoogle Scholar
Griewank, A. 1992 Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim. Methods Softw. 1, 3554.CrossRefGoogle Scholar
Hill, D. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.CrossRefGoogle Scholar
Homescu, C., Navon, I. M. & Li, Z. 2002 Suppression of vortex shedding for flow around a circular cylinder using optimal control. Intl J. Numer. Meth. Fluids 38, 4369.CrossRefGoogle Scholar
Kim, J. & Choi, H. 2005 Distributed forcing of flow over a circular cylinder. Phys. Fluids 17, 033103.CrossRefGoogle Scholar
Kwon, K. & Choi, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys. Fluids 8, 479486.CrossRefGoogle Scholar
Li, Z., Navon, I., Hussaini, M. Y. & Le Dimet, F. 2003 Optimal control of cylinder wakes via suction and blowing. Comput. Fluids 32, 149171.CrossRefGoogle Scholar
Mao, X., Blackburn, H. M. & Sherwin, S. J. 2012 Optimal inflow boundary condition perturbations in steady stenotic flows. J. Fluid Mech. 705, 306321.CrossRefGoogle Scholar
Mao, X., Blackburn, H. M. & Sherwin, S. J. 2013 Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier–Stokes equations. J. Comput. Phys. 235, 258273.CrossRefGoogle Scholar
Mao, X., Sherwin, S. J. & Blackburn, H. M. 2011 Transient growth and bypass transition in stenotic flow with a physiological waveform. Theor. Comput. Fluid Dyn. 25, 3142.CrossRefGoogle Scholar
Marquet, O. & Sipp, D. 2010 Active steady control of vortex shedding: an adjoint-based sensitivity approach. In Seventh IUTAM Symposium on Laminar–Turbulent Transition (ed. Schlatter, P. & Henningson, D. S.), pp. 259264.CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.CrossRefGoogle Scholar
Min, C. & Choi, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123156.CrossRefGoogle Scholar
Nielsen, E. J., Diskin, B. & Yamaleev, N. K. 2010 Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids. AIAA J. 48, 11951206.CrossRefGoogle Scholar
Nielsen, E. J. & Jones, W. T. 2011 Integrated design of an active flow control system using a time-dependent adjoint method. Math. Model. Nat. Phenom. 6, 141165.CrossRefGoogle Scholar
Owen, J., Bearman, P. W. & Szewczyk, A. 2001 Passive control of VIV with drag reduction. J. Fluids Struct. 15, 597605.CrossRefGoogle Scholar
Park, H., Lee, D., Jeon, W., Hahn, S., Kim, J., Kim, J., Choi, J. & Choi, H. 2006 Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device. J. Fluid Mech. 563, 389414.CrossRefGoogle Scholar
Peers, E., Huang, X. & Luo, X. 2009 A numerical model of plasma-actuator effects in flow-induced noise control. IEEE Trans. Plasma Sci. 37, 22502256.CrossRefGoogle Scholar
Pralits, J. O., Brandt, L. & Giannetti, F. 2010 Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650, 513536.CrossRefGoogle Scholar
Roshko, A.1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA Tech. Rep. TN-3169.Google Scholar
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.CrossRefGoogle Scholar
Semeraro, O., Pralits, J., Rowley, C. & Henningson, D. 2013 Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech. 731, 394417.CrossRefGoogle Scholar
Shtendel, T. & Seifert, A. 2014 Three-dimensional aspects of cylinder drag reduction by suction and oscillatory blowing. Intl J. Heat Fluid Flow 45, 109127.CrossRefGoogle Scholar
Stalnov, O., Fono, I. & Seifert, A. 2011 Closed-loop bluff-body wake stabilization via fluidic excitation. Theor. Comput. Fluid Dyn. 25, 209219.CrossRefGoogle Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.CrossRefGoogle Scholar
Wilson, J., Schatzmann, D., Arad, A., Seifert, A. & Shtendel, T. 2013 Suction and pulsed-blowing flow control applied to an axisymmetric body. AIAA J. 51, 24322446.CrossRefGoogle Scholar
Wood, C. 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29, 259272.CrossRefGoogle Scholar
Wu, C., Wang, L. & Wu, J. 2007 Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface. J. Fluid Mech. 574, 365391.CrossRefGoogle Scholar
Zhang, H., Fan, B. & Chen, Z. 2010 Optimal control of cylinder wake flow by electro-magnetic force based on adjoint flow field. Eur. J. Mech. (B/Fluids) 29, 5360.CrossRefGoogle Scholar