No CrossRef data available.
Article contents
Nonlinear dynamics of a buoyant pendulum submerged under surface gravity waves
Published online by Cambridge University Press: 21 April 2025
Abstract
This study investigates the hydrodynamic interaction between a fully submerged buoyant pendulum and surface gravity waves, focusing on its primary and subharmonic resonance behaviour. The oscillatory motion of the pendulum is driven by fluid drag, with primary resonance occurring at the forcing frequency (viz. the wave frequency) and subharmonic resonance manifesting at half the forcing frequency. Both resonances exhibit nonlinear characteristics, including jump-up, jump-down phenomena and hysteresis. Furthermore, particle image velocimetry results reveal that the velocity fields of the surrounding fluid oscillate at the forcing frequency, confirming that subharmonic resonance is not induced by subharmonic excitation within the velocity field. Experimental observations are validated through both analytical and numerical methods, particularly within the primary and subharmonic resonance frequency ranges. The theoretical model describes the transverse motion of the pendulum using a nonlinear ordinary differential equation, with the method of multiple scales employed for the analytical solution. These analyses reveal the nonlinear characteristics of the system, e.g. bistable response of the primary/subharmonic resonances, and identify three distinct response regions based on the forcing frequency and amplitude. The system exhibits primary resonance regardless of the excitation strength; however, an unstable solution arises if the excitation level surpasses a specific threshold value. In contrast, subharmonic resonance is triggered only when the excitation amplitude exceeds a critical value. Furthermore, the experimental hysteresis curve confirms the theoretically predicted primary and subharmonic resonances, along with the jump-up and jump-down characteristics.
JFM classification
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
Footnotes
Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA