Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T16:10:34.962Z Has data issue: false hasContentIssue false

Nonlinear convection in a rigid channel uniformly heated from below

Published online by Cambridge University Press:  26 April 2006

P. G. Daniels
Affiliation:
Department of Mathematics, City University, Northampton Square, London EC1V 0HB, UK
C. F. Ong
Affiliation:
Department of Mathematics, City University, Northampton Square, London EC1V 0HB, UK

Abstract

A weakly nonlinear theory is developed for convection in an infinite rigid horizontal rectangular channel uniformly heated from below. A combination of analytical and numerical techniques along and in the cross-section of the channel leads to the derivation of an amplitude equation governing the spatial and temporal evolution of the flow above the critical Rayleigh number. Results are obtained for general Prandtl numbers and a wide range of aspect ratios. Overall trends are confirmed by comparison with results for an idealized model with stress-free horizontal boundaries. For wide channels, where the aspect ratio is large, the limiting form of the amplitude equation is predicted by reference to the two-dimensional equation describing roll patterns in infinite layers. The connection with this well-developed theory is established for both rigid and stress-free horizontal boundary conditions.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. N. & Stewartson, K. 1977 Stud. Appl. Maths 57, 187.
Buhler, K., Kirchartz, K. R. & Oertel, H. 1979 Acta Mech. 31, 155.
Chana, M. S. 1986 Thermal convection in channels and long boxes. Ph.D. thesis, City University, London.
Chana, M. S. & Daniels, P. G. 1989 J. Fluid Mech. 199, 257.
Cross, M. C. 1980 Phys. Fluids 23, 1727.
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D. 1983 J. Fluid Mech. 127, 155.
Daniels, P. G. 1977 Proc. R. Soc. Lond. A 358, 173.
Daniels, P. G. 1978 Mathematika 25, 216.
Daniels, P. G. 1981 Proc. R. Soc. Lond. A 378, 539
Daniels, P. G. 1984 J. Fluid Mech. 143, 125.
Daniels, P. G. & Chana, M. S. 1987 Proc. ASME Winter Annual Meeting, Boston, HTD, vol. 94, p. 49.
Daniels, P. G. & Ong, C. F. 1990 Intl J. Heat Mass Transfer 33, 55.
Davies-Jones, R. P. 1970 J. Fluid Mech. 44, 695.
Davis, S. H. 1967 J. Fluid Mech. 30, 465.
Dubois, M. & Berge, P. 1978 J. Fluid Mech. 85, 641.
Eckhaus, W. 1965 Studies in Nonlinear Stability Theory. Springer.
Harris, D. L. & Reid, W. H. 1958 Astrophys. J. Suppl. Ser. 3, 429.
Kelly, R. E. & Pal, D. 1978 J. Fluid Mech. 86, 433.
Kessler, R. 1987 J. Fluid Mech. 174, 357.
Luijkx, J. M. & Platten, J. K. 1981 J. Non-Equilib. Thermodyn. 6, 141.
Luijkx, J. M., Platten, J. K. & Legros, J. C. 1982 Intl J. Heat Mass Transfer 25, 1252.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.
Oertel, H. 1980 In Natural Convection in Enclosures (ed. K. E. Torrance & I. Catton), vol. 8, p. 11. ASME HTD.
Schluter, A., Lortz, D. & Busse, F. H. 1965 J. Fluid Mech. 23, 129.
Siggia, E. D. & Zippelius, A. 1981 Phys. Rev. Lett. 47, 835.
Wesfreid, J., Pomeau, Y., Dubois, M., Normand, C. & Berge, P. 1978 J. Phys. Lett. 39, 725.